
A closer look at IP-ID behavior in the Wild

Flavia Salutari, Danilo Cicalese, and Dario J. Rossi

Telecom ParisTech, Paris, France – first.last@telecom-paristech.fr

Abstract. Originally used to assist network-layer fragmentation and
reassembly, the IP identification field (IP-ID) has been used and abused
for a range of tasks, from counting hosts behind NAT, to detect router
aliases and, lately, to assist detection of censorship in the Internet at
large. These inferences have been possible since, in the past, the IP-
ID was mostly implemented as a simple packet counter: however, this
behavior has been discouraged for security reasons and other policies,
such as random values, have been suggested.
In this study, we propose a framework to classify the different IP-ID be-
haviors using active probing from a single host. Despite being only mini-
mally intrusive, our technique is significantly accurate (99% true positive
classification) robust against packet losses (up to 20%) and lightweight
(few packets suffices to discriminate all IP-ID behaviors). We then apply
our technique to an Internet-wide census, where we actively probe one
alive target per each routable /24 subnet: we find that that the majority
of hosts adopts a constant IP-IDs (39%) or local counter (34%), that
the fraction of global counters (18%) significantly diminished, that a non
marginal number of hosts have an odd behavior (7%) and that random
IP-IDs are still an exception (2%).

1 Introduction

The IP identifier (IP-ID) is a 16 (32) bits field in the IPv4 (v6) header [24].
Originally, along with the fragment offset, IP-ID was used to assist packet seg-
mentation and reassembly and it was unique per each combination of source,
destination and protocol. Yet, with technology evolution and the adoption of
the MTU path discovery [21], IP fragmentation is much less common nowadays,
so that the last normative reference [26] allow IP-ID of atomic datagrams to be
be non-unique.

As a consequence, IP-ID fields values are determined by the specific imple-
mentation on the Operating System [22]. Over time, different behaviors have
been observed such as global and per-flow counters, pseudo-random sequences
and constant values [2], as well as odd behaviors such as those due to load balanc-
ing [6] middleboxes, or host implementations using the wrong endianness [22].
Given that some of the above implementations maintain state at the IP level,
the IP-ID has been widely studied [2,20,25], abused [6,14,15], and more recently
used to assist host identification [4, 19,22,23].

In particular, the majority of research work focus their attention on the global
counter implementation, which used to the be the most common implementation

about a decade ago [27]. However, due to recent evolution of the standards [10,
26], a wider range of behaviors can be expected nowadays. Given this context,
we can summarize our main contributions in this work as:

– we design and implement a lightweight methodology to classify the full range
of IP-ID behaviors, based on a handful of ICMP packets

– we carefully validate our method against a dataset comprising about 1,855
sample hosts, for which we built a ground-truth by manual inspection

– we apply the methodology to a Internet-wide campaign, where we classify
one alive target per each routable /24 subnet, gathering an unbiased picture
of the IP-ID adoption

Specifically, whereas the global counter (18% in our measurement) imple-
mentation was the most common a decade ago [27], we find that other behaviors
(constant 34% and local counter 39%) are now prevalent. We also find that secu-
rity recommendations expressed in 2011 [10] are rarely followed (random, 2%).
Finally, our census quantifies a non marginal number of hosts (7%) showing
evidence of a range of behaviors, that can be traced to poor or non-stand im-
plementations (e.g., bogus endianness; non-standard increments) or other tech-
niques (e.g., load balancing). To make our findings profitable to a larger extent,
we make all our dataset and results available to the scientific community at [1].

2 Background and related work

Background. The IP-ID field identifies uniquely fragments of the packets and
it is used to handle the re-assembling process. First documented in the early
80s by RFC791 [24] its use has been updated in several RFCs [5, 8, 10, 11, 26,
27]. Whereas [24] does not fully specify IP-ID behavior (i.e., it only states that
each packet must have a unique IP-ID for the triplet of source, destination and
protocol), different behaviors (namely Global, Local and Random, illustrated in
Fig.1) are detailed in 2006 by RFC4413 [27].

In 2008, RFC5225 [8] observed that some hosts set the IP-ID to zero: at the
time of [8], this was a not legal implementation as the field was supposed to be
unique. Yet, in 2012 [22] observed that the actual IP-ID implementation depends
on the specific Operating System (OS) and versions1. In 2013, RFC6864 [26]
updated the specifications by affirming that the IPv4 ID uniqueness applies to
only non-atomic datagrams: in other words, if the don’t fragment (DF) bit is
set, reassembly is not necessary and hence devices may set the IP-ID to zero.

At the same time, concern has been raised about security problems follow-
ing the predictability of IP-ID sequences [9, 11, 13, 17]. In particular, in 2012
RFC6274 [10] discouraged the use of a global counter implementation for many
security issues, such as stealth port scan to a third (victim) host, and in 2016
RFC7739 [11] addressed concerns concerning IPv6-specific implementations. In

1 In particular [22] reports Windows and FreeBSD to use a global counter, Linux and
MacOS to use local counters and OpenBSD to use pseudo-random IP-IDs.

light of these recent evolution of the standards, a re-assessment of IP-ID usage
in the wild it thus highly relevant.

Related work. Additionally, the IP-ID has been exploited for numerous pur-
poses in the literature. Notably, IP-ID side-channel information helped discov-
ering load balancing server [6], count hosts behind NAT [2, 22], measure the
traffic [6, 14] and detect router alias [3, 16, 25]. More recently, [19] leverages IP-
ID to detect router aliases, or inferring router up time [4] and to reveal Internet
censorship [23], refueling interest in the study of IP-ID behavior. Whereas the
above work [2,6,14,23,25] mostly focus only on the global IP-ID behavior, in this
work we not only consider all expected IP-ID behavior, but additionally quantify
non-standard behaviors: in particular, we provide a methodology to accurately
classify IP-ID behaviors, that we apply to the Internet at large, gathering an
unbiased picture of the relative popularity of each IP-ID behavior.

In terms of methodologies, authors in [20] use ICMP timestamp and IP-ID
to diagnose paths from the source to arbitrary destinations and find reordering,
loss, and queuing delay. In [15], the authors identify out-of-sequence packets
in TCP connections that can be the result of different network events such as
packet loss, reordering or duplication. In [6], they use HTTP requests from two
different machines toward 150 target websites, to discover the number of load-
balancing server. Authors in [23] use TCP SYN-ACK from multiple vantage
points to identify connectivity disruptions by means of IP-ID fields, which then
they use as a building block of a censorship detection framework. In this work, we
leverage ICMP traffic (spoofing IPs to craft sequences of packets that precisely
interleaved when they hit the target under observation) to build an accurate,
robust and lightweight IP-ID classification technique.

3 Methodology

To provide an accurate and comprehensive account of IP-ID behavior in the wild,
we need (i) a reliable classifier, able to discriminate among the different typical
and anomalous IP-ID behaviors. At the same time, to enable Internet coverage,
(ii) the classifier should rely on features with high discriminative power, extracted
from an active probing technique that is as lightweight as possible. In this section
we illustrate the practical building blocks and their theoretical foundations, that
our classification framework builds upon.

3.1 IP-ID classes

From the host perspective, several IP-ID behaviors are possible as depicted in
Fig.1. It shows sequences s of 25 IP-ID samples sent from 2 different host (dark
and white) where the packets are sent alternatively to the target. The different
behaviors depicted are, from left to right: (i) constant counters are never in-
cremented (and for the most part are equal to 0x0000); (ii) local or per-host
counters that are incremented at each new packet arrival for that flow (mostly

0

2
16

S
(t
)=
IP
-I
D

Constant Local Global Random Odd

Feature Expected values

H(s) 0 ≤ log2N log2N ≤ log2N -
σx = σy 0

√
(N2 − 4)/48

√
(N2 − 4)/12 (216 − 1)/

√
12 -

E[x′] = E[y′] 0 1 2 (216 − 1)/2 -
σs 0 ≤ (216 − 1)/

√
12

√
(N2 − 1)/12 (216 − 1)/2 -

H(x′) = H(y′) 0 0 0 ≤ log2N/2 -
σ′
s 0 |x1 − y1 − 1/2| 0 (216 − 1)/

√
12 -

Fig. 1: Illustration of Constant, Local, Global, Random and Odd sequences (top)
and tabulated expected values for selected features (bottom)

by 1 unit): as a consequence, while the black or white per-host sub-sequences
are monotonically increasing, the aggregate sequence alternates between the two;
(iii) global counters are incremented by 1 unit (rarely by 2 units) at each new
packet arrival for any flow: thus, the sequence s is monotonically increasing (by
1 unit), and the black or white per-host sub-sequences are monotonically in-
creasing but at a faster rate (by 2 units); (iv) random IP-IDs are extracted
according to a pseudo-random number generator. Finally, a special mention is
worth for the class of (v) odd IP-ID behaviors, that are not systematically doc-
umented in the literature and that arise for several reasons (including bugs,
misconfiguration, non-standard increments, unforeseen interaction with other
network apparatuses, etc.).

3.2 Active probing

To gather the above described sequences, our measurement technique relies on
active probing. We craft a tool able to send and receive ICMP packets, running
at two vantage points (VP) with public IP addresses in our campus network.

Specifically, we send a stream of N ICMP echo requests packets in a back-to-
back fashion, which forces the target machine to generate consecutive ICMP echo
replies: thus, assuming for the time being that no packet were lost, we gather
a stream of N IP-IDs samples for that target. Sending packets back-to-back is
necessary to reduce the noise in the IP-IDs stream sequence: if probe packets
were spaced over time, the sequence could be altered by exogenous traffic hitting
the target (e.g., in case of global counter). As a result, the sequence would depend

on the (unknown) packet arrival rate in between two consecutive probe packets,
making the classification more complex.

A second observation is that, whereas a single vantage point may be sufficient
to distinguish among constant, random and global counters, it would fail to
discriminate between global vs local counters. However, send packets from two
different VPs is not advisable, due to the difficulty in precisely synchronizing the
sending patterns so that packets from different hosts alternate in the sequence.

Therefore, a better alternative is to receive packets on two different VPs, x
and y, but use only one of them, x, as sender: by letting x spoof the address
IPy of the colluding receiver y, it is possible to generate a sequence of back-to-
back packets that is also perfectly interleaved as in Fig.1. To identify reordering,
packet loss and duplication, we additionally control the sequence number in the
stream of generated probe packets.

3.3 Features

We need to define features able to discriminate among IP-IDs implementations.
We send N packets to a given target t, whose reply are sent back to our two VPs
x and y: we indicate with s the aggregated sequence comprising N IP-IDs sent
back by t, as we receive it at the edge of our network2. By abuse of language, we
indicate with x and y the sub-sequences (each of length N/2) of IP-IDs, received
by the homonyms host. From these sequences x, y and s we further construct
derivative series x′, y′ and s′ by computing the discrete differences between the
consecutive IP-IDs (i.e., x′i = xi − xi−1). We summarize these series with few
scalar features by computing the first E[·] and second moment σ· of the IP-ID
series, as well as their entropy H(·).

Intuitively, we expect the mean of the constant sequence to be unknown, but
its derivative to be null. Similarly, derivative of a global counter would have a
value of 1 (2) for the aggregate sequence s (subsequences x and y). Entropy of
the sequence is expected to increase from a minimum of the constant sequence,
to a global counter, to local counters, and to be maximum for random sequences.
Actually, for each feature we can derive an expected value in the ideal3 case (so
that no expected values is reported for the odd class): for lack of space, we do not
report the full mathematical details in this paper, that the reader can find in [1],
but we summarize the main takeaway in the bottom part of Fig.1. Specifically,
for each of the observed behavior depicted on the top plots, the figure tabulates
the expected values for 6 relevant features (namely H(s), σx,E[x′], σs, H(x′), σ′s).
The specific choice is motivated by the fact that these features happens to have
the highest discriminative power, as later shown.

2 Notice that packet losses and reordering may let us receive less than N packets, or
receive packets in a slight different order than what sent by the target. We come
back to this issue later on

3 Sequences from well behaving hosts that have no software bug or malicious behavior,
and that are neither affected by losses nor reordering

4 IP-ID Classification

From the values tabulated in Fig.1, we expect classifiers that use this set of
features to fully discriminate the set of IP-ID well-defined behaviors under ideal
conditions. However, as we shall see, unexpected behavior may arise in the Inter-
net, due to a variety of reasons, which are hard to capture in general. We thus
opt for a supervised classification approach, to learn a predictive model with
decision trees (DTs), based on the above features. Specifically, we resort to the
Classification And Regression Trees (CART) [18], that builds trees having the
largest information gain at each node. DTs are part of the supervised machine
learning algorithms, and infer a classification function from a (i) labeled train-
ing dataset, that we need to build and that is useful for training and validation
purposes. Additionally, we investigate (ii) to what extent the classifier is robust
against losses, and finally (iii) assess the minimum number of samples N needed
to achieve a reliable classification.

4.1 Validation

We first train and validate our classifier using a real dataset G of IP-ID sequences
for which we construct a ground truth. For this purpose, we perform a small-
scale measurement campaign where we select 2,000 Internet targets and send
sequences of N = 100 ICMP probes. We include in this dataset only the 1,855
hosts from which we receive 100% of the replies, and perform manual inspec-
tion of each of the sequences. Interestingly, we find a small but non marginal
fraction (about 7%) of sequences that are hard to classify: a deeper investiga-
tion reveals these odd behaviors to be due to a variety of reasons – including
per-packet IP-level load balancing, wrong endianness, non standard increments
in the global counter, etc. These samples provide a useful description of the
unexpected behavior class, that would otherwise have been difficult to define.

We assess the classification accuracy over G with a 20-fold cross-validation,
whose results are reported in Fig. 2-(a) as a confusion matrix: we can observe that
the classifier is extremely accurate, with 100% true positive in the constant and
local classes, 99% for the random and 98% for the global class. The worst case is
represented by 95% true positive for the odd class (that represent only 7% of the
samples): these very few misclassifications are erroneously attributed to local,
global or random classes, and additional series definition (e.g., to compensate
for wrong endianness) could help reducing if needed.

Additionally, Fig. 2-(b) depicts the importance for the most useful features
of the classifier (that were early tabulated in bottom part of Fig. 1). Four main
takeaways can be gathered from the picture: first, just four features are nec-
essary for a full discrimination; second, as expected features that measure the
dispersion (entropy and standard deviation) are prevalent; third, both original
and derivative sequences are useful in the detection; fourth, subsequence metrics
are highly redundant (i.e., H(x) = H(y), σx = σy, etc.) and so only one of the
two appears in the classification tree.

Consta
nt

Loca
l

Global

Ran
dom

Odditi
es

Predicted label

Constant

Local

Global

Random

Oddities

Tr
ue

la
be

l
1.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00 0.00

0.00 0.00 0.98 0.00 0.02

0.00 0.00 0.00 0.99 0.01

0.00 0.01 0.03 0.01 0.95

20-fold Normalized Confusion Matrix - CG

0.0

0.2

0.4

0.6

0.8

1.0

(a)

 0

 0.1

 0.2

 0.3

H(s) σx E[y'] σs H(x') σs'

H(.)
σ(.)
E[.]

R
el

at
iv

e
im

po
rt

an
ce

Features

(b)

Fig. 2: Validation: (a) Confusion Matrix of 20-fold validation over G and (b)
Relative importance for the most useful features of the classifier.

4.2 Robustness

We next assess the robustness of our classifier against packet losses, which may
introduce distortion in the measured features. Since the expected values in the
ideal conditions are significantly apart, we expect the classifier to be resilient to
a high degree of losses. For reason of space, we limitedly consider robustness to
losses here and refer the reader to [1] for more details. Without loss of general-
ity, we consider an extreme case where only 80 out of 100 samples are correctly
received (i.e., a 20% loss rate). While for simple loss patterns (e.g., uniform i.i.d.
losses) it is still possible to analytically derive expected values in closed form,
for loss models where losses are correlated, this becomes significantly more dif-
ficult. As such, we opt for an experimental assessment of classification accuracy
in presence of different synthetic loss models, that we apply to synthetic ideal
sequences by purposely discarding a part of the sequences. Specifically, we con-
sider: (i) a uniform i.i.d. loss model; (ii) a hole model where, starting from a
random point in the sequence, 20% of consecutive samples are removed; (iii) an
extreme model where we remove 20% of the initial values (or equivalently the
final 20% of the sequence); and finally (iv) an equidistant model where losses
start at a random point and are equally spaced over the sequence.

We apply these loss models to obtain a synthetic loss dataset S̃ and assess
the accuracy of the previously validated model, i.e., the one trained on the
real lossless dataset G. Specifically, for each loss model we generate 5,000 loss
sequence pattern, for an overall of 20,000 test cases. Results of these experiments
are reported in Fig.3. In particular, the confusion matrix reported in Fig.3-(a)
shows the aggregated results over all loss models: we can observe that most of
the classes have a true positive classification of 99% or 100% even in presence of
20% packet losses, and irrespectively of the actual loss pattern.

Consta
nt

Loca
l

Global

Ran
dom

Odditi
es

Predicted label

Constant

Local

Global

Random

Oddities

Tr
ue

la
be

l

1.00 0.00 0.00 0.00 0.00

0.00 0.86 0.00 0.00 0.14

0.00 0.00 1.00 0.00 0.00

0.00 0.00 0.00 0.99 0.01

0.00 0.00 0.00 0.00 0.00

Normalized confusion matrix - G vs S̃

0.0

0.2

0.4

0.6

0.8

1.0

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Hole

Unifo
rm

Equidist
an

t

Extr
em

al

Loss Model

Re
la

tiv
e

lo
ca

l m
is

cl
as

si
fic

at
io

n

(b)

Fig. 3: Robustness: (a) Confusion Matrix of a classifier trained over a real lossless
sequence G and tested over synthetic lossy sequences S̃ and (b) breakdown of
the (local,odd) misclassification (14%) for the different loss models.

Additionally, we observe that in the case of the local class, only 86% of the
sequences are correctly classified, whereas 14% of the local sequences in presence
of heavy losses are erroneously classified as being part of the “odd” behavior
class. Fig.3-(b) dig further the reasons of this discrepancy, showing that the
misclassification mostly happens for the hole loss model, while in the other cases
is a very rare event. Recalling the odd behavior early shown in the top right
plot of Fig. 1, we notice that this model induces a gap in the sequence, which is
possibly large enough to be statistically similar to cases such as load balancing,
where the sequence alternates among multiple counters.

Overall, we find the classifier to be robust to very high loss rates and, with
a single exceptions, also invariant to the actual loss pattern – which is a rather
desirable property to operate the classifier into a real Internet environment.

4.3 Lightweight

We finally assess how large the number of samplesN needs to be to have accurate
classification results. In principle, features tabulated in Fig.1 are diverse enough
so that we expect high accuracy even for very small values of N .

To assess this experimentally, we take the real loss less dataset G and only
consider that we have at our disposal only N ′ < N out of the N = 100 samples
gathered in the experiment. For each value of N ′, we perform a 20-fold cross
validation, training and validating with N ′ samples. We start from a minimum
of N ′ = 10 (i.e., 5 packets per host) up to the maximum of N = 100 (i.e., 50

2 4 6 8 10 20 30 40 50 100
Number of Replies

0.7

0.8

0.9

1.0

A
cc

ur
ac

y
of

20
-F

ol
ds

Fig. 4: Lightweight: Accuracy as a function of the sample set size

probes per host) samples. Fig.4 clearly shows that accuracy is already very high4

at 0.95 when N ′ = 4 and exceeds 0.99 when N = 100.
At the same time, these results are gathered in the context of an ideal se-

quence, whose replies are collected in order and without losses. It is intuitive
that there is a trade-off between robustness against losses and lightweight: we
expect the accuracy to degrade in presence of losses and reordering for short
N < 4 probe sequences, whose detailed analysis we leave for future work.

5 Internet measurement campaign

Measurement. Finally, we apply our classifier in the wild, and perform a large
scale Internet measurement campaign. We want to avoid putting stress on the
infrastructure carrying a full Internet census: as we aim at providing an accurate
picture of the relative popularity of IP-ID implementations on the Internet, it
suffices to collect measurements for a large number of targets, namely 1 alive
IP/32 host per each /24 prefix. We observe that, while our classifier is able to
perform a very accurate classification even with few samples, we need to deal
with loss rates, which is unknown a priori. Hence, we prefer for the time being
use a simple and conservative approach and select N = 100 samples that is very
accurate also in presence of very high loss rates. We instead leave the use of an
adaptive sample set size (i.e., start with N = 10 and re-probe the same target
with a larger N only in case of losses) for future work.

For the targets selection, we rely on the public available hitlist regularly
published by [12], comprising 16 millions of targets IP/32. The hitlist contains
targets for all /24, including those who have never been replied to the probing:
excluding them from our target list, leaves us with approximately 6 millions of
potential targets. To further reduce the amount of probe traffic, we then decide to
be even more conservative: we preliminary probe the remaining targets sending
two ICMP echo requests, and include in our final target list the approximately
3,2 millions responsive hosts (in line with [7, 28]).

4 Notice that even in the extreme case with as few as N ′ = 2 packets, random and
constant classification are correctly labeled, whereas the remaining global vs local
cannot be discriminated, yielding to 0.70 accuracy in the G set.

0 10 20 30 40 50 60 70 80 90 100
Number of Replies

0.0

0.2

0.4

0.6

0.8

1.0

EC
D

F

Aggregated Series [sT]
Host A [xT]
Host B [yT]

(a)

Constant Local Global Random Oddities
0.0

0.1

0.2

0.3

0.4

N
or

m
al

iz
ed

O
cc

ur
re

nc
es L dataset (2,588,148 IPs)

G dataset (1,855 IPs)

(b)

Fig. 5: Internet campaign: (a) ECDF of the number of packet replies and (b)
Normalized classes occurrences for the training G and Internet-scale L dataset

We send a batch of N=100 back-to-back probe packets to each target, but
otherwise probe at a low average rate, so that we complete a /24 census in about
3 days. Fig.5-(a) shows the empirical cumulative distribution function (ECDF)
of received packets at our VPs. We observe that we receive almost all the replies
from most of the targets: the 90% (80%) of the targets answer to more than
40 (all) packets per each host, corresponding to a 20% (0%) loss scenario. A
large plateau in the CDF also indicate that the distribution is bi-modal, i.e., the
remaining hosts generally reply with very few packets (e.g., 10 or less per each
VP or over 90% loss rate). This suggests that future campaigns could be safely
conducted with a smaller N ′ < N : indeed, while for hosts with over 90% loss
rates there are few hopes of correct classification, we expect the classification for
hosts with 20% or lower loss rates to be reliable with as few as N ′ = 10 packets.

To provide accurate classification results, in light of our robustness analysis,
we limit our attention to the 2,588,148 hosts for which we have received at
least N = 80 packets. We make this large-scale dataset, that we annotate with
classification results and denote with L, available for the community at [1].

Comparison with related work. We apply the classification to batches of
100,000 hosts, and for each class c, compute the relative breakdown of the class
in that batch n̂c = nc/

∑
i ni, evaluating the confidence intervals of n̂c over the

different batches. Results are reported in Fig.5-(b), where we additionally report
the breakdown in our G training set comprising just 1,855 population samples:
it can be seen that while G has no statistical relevance for the census, it is not
affected by class imbalance and thus proves to be a good training set.

Results are particularly interesting to put in perspective with current lit-
erature knowledge. Specifically, past work [6, 9, 20, 27] consistently reported the
global counter to be more widespread: in 2003, [20] reported that 70% (over 2000
probed targets) were using an IP-ID counter (global or local implementation);
in 2005, [6] reported that 38% (over 150 hosts) used a global IP-ID; in 2006, [27]
affirms the global implementation to be the most common assignment policy
(among 3 behaviors); in 2013, [9] asserts 57% (over 271 DNS TLD servers) to
implement global counter. On the contrary, we find that only 18% (over 2,5 mil-

lion targets) are still using global counter implementation: this in line with 2017
results that reports slightly more than 16% global IP-IDs [23] (whose main aim
is to detect censorship in the Internet). While this decreasing trend is possibly
affected by the comparably smaller population size of early studies, however we
believe this trend to be rooted into OS-level changes in IP-ID policy implemen-
tations: e.g., Linux and Solaris, which previously adopted a global counter, for
security reasons later moved to a local counter implementation [10].

The sole quantitative assessment of IP-ID behavior over multiple classes dates
back to 2013, and is limited to 271 Top Level Domains TLDs probed by [9] (whose
main aim is to propose practical poisoning and name-server blocking attacks on
standard DNS resolvers, by off-path, spoofing adversaries). In particular, the
2013 study (our census) finds 57% (18%) global, 14% (39%) local and 9% (34%)
constant IP-IDs, which testify of a significant evolution. Additionally, [9] suggests
that 20% of DNS TLD exhibit evidence of “two or more sequential sequences
mixed up, probably due to multiple machines behind load balancer”, much larger
than the 7% fraction of the larger “odd” class (including but not limited to load
balance) that we find in this work. Finally, despite 2012 recommendations [10],
the percentage of random IP-ID sequence was (and remains) limited 1% (2%).

6 Conclusions

This work presents, to the best of our knowledge, the first systematic study of
all IP-ID behaviors prevalence in the current Internet. Our first contribution is
to devise an accurate, lightweight and robust classifier: accuracy of the classifier
follows from a principled definition of the statistical features used to succinctly
describe the IP-ID sequence; robustness is a consequence of this choice, as fea-
tures remains wide apart even under heavy losses.

Our second contribution is to carry on a manual investigation effort for a
moderate size dataset coming from real Internet measurements: this valuable
ground truth allow us to adopt a supervised classification techniques to train
a model able not only to detect well-defined behaviors, but also to correctly
recognize a wide range of odd behaviors.

Our final contribution is to apply this classification to an Internet-scale mea-
surement campaign, obtaining a very accurate picture of nowadays IP-ID behav-
ior prevalence, which we release as open dataset at [1]. This dataset is possibly
instrumental to other relevant work in the measurement field [2, 6, 23, 25], and
by updating and consolidating the scattered knowledge [6, 9, 20, 23, 27] of IP-ID
prevalence, contributes in refining the current global Internet map.

Acknowledgments

This work has been carried out at LINCS (http://www.lincs.fr) and benefited
from support of NewNet@Paris, Cisco Chair “Networks for the Future”
at Telecom ParisTech (http://newnet.telecom-paristech.fr).

References
1. https://perso.telecom-paristech.fr/~drossi/ip-id/.
2. S. M. Bellovin. A technique for counting NATted hosts. In Proc. IMW, 2002.
3. A. Bender, R. Sherwood, and N. Spring. Fixing ally’s growing pains with velocity

modeling. In Proc. ACM IMC, 2008.
4. R. Beverly, M. Luckie, L. Mosley, and K. Claffy. Measuring and characterizing

IPv6 router availability. In PAM, 2015.
5. R. Braden. RFC 1122, Requirements for Internet Hosts – Communication Layers,

1989.
6. W. Chen, Y. Huang, B. Ribeiro, et al. Exploiting the IPID field to infer network

path and end-system characteristics. In PAM, 2005.
7. A. Dainotti, K. Benson, A. King, B. Huffaker, E. Glatz, X. Dimitropoulos,

P. Richter, A. Finamore, and A. C. Snoeren. Lost in space: Improving inference of
IPv4 address space utilization. IEEE JSAC, 2016.

8. K. S. G. Pelletier. RFC 5225, RObust Header Compression Version 2 (RO-
HCv2):Profiles for RTP, UDP, IP, ESP and UDP-Lite , 2008.

9. Y. Gilad and A. Herzberg. Fragmentation considered vulnerable. ACM TISSEC,
2013.

10. F. Gont. RFC 6274, Security assessment of the internet protocol version 4. 2011.
11. F. Gont. RFC 7739, Security implications of predictable fragment identification

values. 2016.
12. J. Heidemann, Y. Pradkin, R. Govindan, C. Papadopoulos, G. Bartlett, and J. Ban-

nister. Census and survey of the visible internet. In Proc. ACM IMC, 2008.
13. A. Herzberg and H. Shulman. Fragmentation considered poisonous, or: One-

domain-to-rule-them-all. org. In IEEE CCNS, 2013.
14. Idle scanning and related IPID games. https://nmap.org/book/idlescan.html.
15. S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley. Measurement and

classification of out-of-sequence packets in a tier-1 IP backbone. IEEE/ACM TON,
2007.

16. K. Keys, Y. Hyun, M. Luckie, and K. Claffy. Internet-scale IPv4 alias resolution
with MIDAR. IEEE/ACM TON, 2013.

17. A. Klein. OpenBSD DNS cache poisoning and multiple O/S predictable IP ID
vulnerability. Technical report, 2007.

18. W.-Y. Loh. Classification and regression trees. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, 2011.

19. M. Luckie, R. Beverly, W. Brinkmeyer, et al. Speedtrap: internet-scale IPv6 alias
resolution. In Proc. ACM IMC, 2013.

20. R. Mahajan, N. Spring, D. Wetherall, and T. Anderson. User-level internet path
diagnosis. ACM SIGOPS Operating Systems Review, 2003.

21. J. C. Mogul and S. E. Deering. RFC 1191, Path MTU discovery, 1990.
22. S. Mongkolluksamee, K. Fukuda, and P. Pongpaibool. Counting NATted hosts by

observing TCP/IP field behaviors. In Proc. IEEE ICC, 2012.
23. P. Pearce, R. Ensafi, F. Li, N. Feamster, and V. Paxson. Augur: Internet-wide

detection of connectivity disruptions. In IEEE SP, 2017.
24. J. Postel. RFC 791, Internet protocol, 1981.
25. N. Spring, R. Mahajan, D. Wetherall, and T. Anderson. Measuring ISP topologies

with rocketfuel. IEEE/ACM TON, 2004.
26. J. Touch. RFC 6864, Updated Specification of the IPv4 ID Field, 2013.
27. M. A. West and S. McCann. RFC 4413, TCP/IP field behavior. 2006.
28. S. Zander, L. L. Andrew, and G. Armitage. Capturing ghosts: Predicting the used

IPv4 space by inferring unobserved addresses. In Proc. ACM IMC, 2014.

