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ABSTRACT
The Web is one of the most successful Internet application. Yet,
the quality of Web users’ experience is still largely impenetrable.
Whereas Web performances are typically gathered with controlled
experiments, in this work we perform a large-scale study of one of
the most popular websites,namely Wikipedia, explicitly asking (a
small fraction of its) users for feedback on the browsing experience.
We leverage user survey responses to build a data-driven model of
user satisfaction which, despite including state-of-the art quality of
experience metrics, is still far from achieving accurate results, and
discuss directions to move forward. Finally, we aim at making our
dataset publicly available, which hopefully contributes in enriching
and refining the scientific community knowledge on Web users’
quality of experience (QoE).
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1 INTRODUCTION
Since its inception, the World Wide Web has sometimes been
dubbed as World Wide “Wait” [9]. Slow rendering of webpages
happened due to dial-up connections in the 80s, slow 2G connec-
tions in the 90s and so on, but it also persists nowadays for several
reasons including unexpected sources of latencies [16], interactions
between network protocols [22], the growingly more complex struc-
ture of websites [45], an increased usage of mobile devices [19, 34]
and the emergence of new protocols [40]. Yet, whereas the study of
Web performance is commonly [19, 22, 29, 34, 40, 45–47] tackled via
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simple objective metrics [20], and rather typically the Page Load
Time (PLT), the quality of Web users’ experience is still largely
impenetrable [15, 28]. As such, a number of alternative metrics
that attempt at better fitting the human cognitive process (such as
SpeedIndex, user-PLT etc.) have been proposed as a proxy of QoE.

At the same time, studies involving more advanced metrics are
typically validated with rather small-scale experiments, either with
a small number of volunteers, or by using crowdsourcing platforms
to recruit (cheap) labor and produce a dataset labeled with user
opinion. Often, videos of Webpages rendering process is used (as
opposite to actual browsing), with possibly very specific instruc-
tion (e.g., such as in A/B testing, by clicking on the fastest of two
rendering processes) that are however rather different from the cog-
nitive process in action during the typical user browsing activities.
Additionally, such tests are carried on a limited number of fixed
conditions, with a small heterogeneity of devices, OSs and browsers,
and are not exempt from cheating so that ingenuity is needed to
filter out invalid answers from the labeled dataset [24, 44]. Finally,
because these tests are carried on a limited number of pages, it is
possible to evaluate computationally costly metrics, such as those
that require processing the visual rendering of the webpage, which
would hardly be doable in the World “Wild” Web.

Our aim is instead to take a completely different approach and
perform a large-scale study of a popular website in operation, by
explicitly asking a fraction of users for feedback on their browsing
experience. Clearly, the approach is challenging but it opens the
possibility to gather more relevant user-labels, as they are issued
from real users of a real service, as opposite to crowdworkers payed
to play a game (e.g., find which video completes first as in A/B
testing). We do so by launching a measurement campaign over
Wikipedia, that at time of writing has gathered over 62k survey
responses in nearly 5 months. We complement the collection of
user labels with objective metrics concerning the user browsing
experience (ranging from simple PLT [20] to sophisticated SpeedIn-
dex [1]), and harvest several data sources to further enrich the
dataset so that each user survey answer is associated with over 100
features. Summarizing our main contributions:

• first, we use survey data to characterize user satisfaction,
finding that on average 85% of users are satisfied;

• second, we build a supervised data-driven model of user ex-
perience: despite our features include state-of-the art quality
of experience metrics, we find that they fall short to model
user QoE in operational settings;

• third, in spirit with research reproducibility, we plan to re-
lease both the collected dataset and our developed code as
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open-source, as we hope this can help the scientific commu-
nity in refining its understanding of Web users’ experience.

After overviewing the related work (§2), this paper describes our
feedback collection process and dataset (§3), that we leverage to
build a data-driven model of Wikipedia user experience (§4), finally
discussing its current limits and directions to circumvent them (§5).

2 BACKGROUND
Assessment of Web users’ quality of experience can be traced back
to [36], that was among the first to adapt classic results of psycho-
behavioral studies gathered in the computer domain [30] (in turn
inspired by work by Weber and Fechner in the late 1800s), to the
computer-network domain. This knowledge was later embedded
into standards ITU-T G1030 [26, 39] (and models [23]) that encode
the Weber-Fechner logarithmic [26, 39] (or exponential [23]) rela-
tionship between a stimulus (e.g., a delay) and its perceived impact
(e.g., nuisance for Web users). However, while logarithmic models
are valid for simple waiting tasks (e.g., file downloads), the case
of interactive Web browsing is knowingly much more complex, as
ITU-T G1031 [27] and [21] first pointed out.

Still, with few exceptions [15, 18, 44, 48] most studies still rely
on simple metrics such as the Page Load Time (PLT) to assess
the expected impact of new Web protocols [22, 40, 45, 47], Web
accelerators [29, 46] and devices [34, 37]. While reducing delay
is clearly a desirable objective, it is however unclear if (and by
how much) a latency reduction translate into a better perceived
experience, which is the ultimate goal of the above studies. In
other words, while the importance of delay in human perception
is agreed upon, the exact relationship between the Web response
time and user satisfaction appear much less clear than it appeared
to be [33], and motivated a proliferation of new metrics proposals
and validation studies attempting at going beyond PLT.

Web QoE metrics: As we are interested in measuring browsing
experience on individual pages, engagement metrics such as those
used in [11, 31] are clearly out of scope. As such, objective metrics
of interest for Web user QoE can be divided in two classes. On the
one hand, there are metrics that either pinpoint precise time instants:
notable examples include the time at which the DOM is loaded or
becomes interactive (TTI), the time at which the first element is
painted (TTFP) or the time when the Above The Fold (ATF) portion
of the page is rendered [14] etc. Most of these metrics are available
from the browser navigation timing [20], and are easy to include
(though not necessarily relevant) as proxy of user experience.

On the other hand, there are metrics that integrate all events
of the waterfall representing the visual progress of the page, such
as SpeedIndex [1] and variants [2, 12, 24], that have received sig-
nificant attention lately. Denoting with x(t) ∈ [0, 1] the visual
completeness ratio of a page, metrics in the SpeedIndex family are
defined as the integral of the residual completion

∫
(1 − x(t))dt

and differ in the way they express x(t). Initial definitions in this
family required capturing movies of the rendering process [1], or
to further use similarity metrics SSim [24], making them difficult
to use outside a lab environment. To counter this issue, simple ap-
proximations such as the ObjectIndex/ByteIndex [12] that merely
count the fraction of objects/bytes received (over the total amount),

or as the RUM SpeedIndex (RSI) [2] that use areas of rectangles for
objects as they are painted on screen (over the total screen size)
have been proposed. In this paper, we use RSI, which is among
the most advanced Web QoE metrics considered to be the current
industry standard. Finally, while we are aware that more complex
approaches involving the spatial dimension (i.e., eye gaze) also
exist [15, 28], we prefer to leave them for future work (cfr §5).
Metrics Validation: At the same time, the above metrics suffer
from a limited validationwith user feedback. Typical approaches are
to crowdsource the validation with A/B testing [24, 44], or by per-
forming experiments on real pages in controlled conditions [18, 33,
35]. Both approaches have their downsides. Controlled experiments
with real HTTP server/clients and emulated network conditions for
a more faithful and interactive browsing experience, but are harder
to scale, topping to few hundreds users and few thousands data
points [18]. A/B tests try to circumvent this limit, but introduce
other limitations. First and foremost, A/B testing is hardly represen-
tative of Web browsing activity, since crowdworkers are instructed
to select which among two videos, that they are passively screening
side-by-side and that correspond to two different Web rendering
processes, appears to finish first – whereas it is known that even
for a simple Web browsing task such as information seeking, al-
ready different types of searches are rather different from the user
standpoint in terms of cognition, emotion and interaction [32]. In
other words, these experiments inform us that humans can per-
ceive differences in these rendering processes, however they fail
to signify if these perceptible rendering changes would impact the
user satisfaction through the course of a normal browsing session.

The time at which users consider the process finished is denoted
as user-PLT (uPLT)[44] or Time To Click (TTC) [24] and is often
used as a ground truth of user perception. Yet, when users select
a uPLT in [44], they are proposed with similar frames at earlier
times, which has the beneficial effect of clustering answers and
make uPLT more consistent at the price of possibly inducing a
bias. Similarly, [24] employs SpeedIndex and TTC to forecast which
among the left or right video was selected by the user at time TTC:
the classifier in [24] is accurate in predicting which of the two
videos is perceived as fastest by users. Yet, findings in [24] are not
informative about whether the user would have been dissatisfied
from the slower rendering had s/he been truly browsing.

Our contribution: To get beyond these limitations, in this work
we are the first to query, at scale, Web users for their feedback on
the quality of their browsing experience. which, to the best of our
knowledge, has not been attempted before on the wide and wild
Web. Instead of collecting user feedback on a 5-grade ACR scale, we
ask for a (slightly more than) binary feedback (see §3), which let us
formulate a simple (yet hard, see §4) binary classification problem.

Compared to recent literature , we are the first to involve a large
number of real users (62k from 59k distinct IP addresses) accessing
a diverse set of pages (46k Wikipedia pages, which are more likely
similar among them than the set of different websites used in other
studies), gathering over 62k user responses overall (more than twice
the survey responses collected in similar large-scaleWikipedia stud-
ies [41]). Particularly, whereas most of the studies involving lab
volunteers & crowdworkers employ a single browser and hard-
ware (since crowdworkers are shown videos rendered with a single



browser and hardware combination) on a relatively small set of
synthetic controlled network conditions, in our dataset we observe
45 distinct browsers software used on over 2,716 hardware devices
on 3,827 ISPs – a significant change with respect to controlled lab
conditions, which make the dataset of particular interest.

3 USER FEEDBACK COLLECTION
Wikipedia is, according to Alexa [3], the 5th most popular website,
with over 1 billion monthly visitors, that spend over 4 minutes over
3 pages on average per day on the site. We engineer a survey that
is triggered after the page ends loading and collects user feedback
(§3.1), that we augment with additional information (§3.2).

We note that, while this paper is not the first in leveraging
Wikipedia surveys in general (see e.g., [41]) this is the first to gather
user feedback on quality of Web browsing experience from oper-
ational websites, for which we believe releasing the dataset can
be valuable for the community. Tomake sharing of the dataset possi-
ble1, we take special care intomaking user and content deanonymiza-
tion as hard as possible, without hurting the dataset informative
value as much as possible (§3.3). In this section, we also perform a
preliminary assessment of the collection methodology, to confirm
the absence of bias in the response process (§3.4).

3.1 Technical aspects of the survey collection
Due to limitations inWikimedia’s caching infrastructure, the survey
is injected into the page via client-side code. Wikimedia continu-
ously collects navigation timing performance of a randomly selected
sample T of page views (less than 1 every 1,000 pageviews); the
survey is displayed to a randomly selected sub-sample S of this
population (less than 1 every 1,000 of the pageviews with naviga-
tion timing information) and only part of the surveys do receive an
answer A . Since A ⊂ T , several features (that we detail in §3.3)
related to page loading performances are also available for pages
sampled in the survey responses.

The survey appears on Russian, French and Catalan Wikipedias,
as well as EnglishWikivoyage, and it is displayed in the appropriate
language to the viewer. We collect the survey on mobile & desktop
version of the site (but not on the mobile app). Instead of asking
users a 5-grade Absolute Category Ranking (ACR) score, we opt for
a simpler yet still very relevant feedback [25], as users can respond
with a positive, neutral or negative experience. Neutral feedback is
meant for, e.g, users that have no honest opinion, as well as users
who were not paying attention during the rendering, or users that
do not understand the question, etc. to avoid biasing the results
(§3.4). For the sake of completeness, a snapshot of the survey as it
is rendered for English readers is reported in Fig. 1.

The survey is injected in the DOM after the page finished loading
(i.e., when loadEventEnd[20] fires). In order to give the survey
visibility, it is consistently inserted in the top-right area of the
wiki article, ensuring that it typically appears above the fold, with
randomization of answer order. However, as the users can freely
browse the page before the survey appears, it might be out of sight
when it’s injected in the DOM, which is why we also record the
time elapsed between the loadEventEnd and the moment the user
sees the survey. Also users that are shown the survey are free not
1The Wikimedia feature vetting process is still ongoing at time of writing.

Figure 1: Appearance of the Survey in the EnglishWikipedia
(answer order is randomized).

Table 1: Collected corpus ofWikipedia users’ QoE feedback.

Period May 24th – Oct 15th
No. of survey requests |S | = 1746799
No. of survey answers |A | = 62740 |S |/ |A |=3.6%
No. of positive answers |A+ | = 53208 |A+ |/ |A | = 84.8%
No. of neutral answers |A0 | = 4838 |A0 |/ |A | = 7.7%
No. of negative answers |A− | = 4694 |A− |/ |A | = 7.5%

to respond to the survey, or might as well respond very late (e.g.,
possibly browsing to other tabs in the meanwhile).

Overall, users responded as reported in Tab.1 to about 3.6% of
the over 1.7M surveys that have been displayed in the period, for a
total of over 62k anwers: 84.8% of the users respond positively to
the survey with an almost equal split of the remaining answers to
a neutral (7.7%) or negative (7.5%) grades.

3.2 Collected features
We enrich the collected corpus with external sources that are instru-
mental to the purpose of feedback prediction (§4). A terse summary
of the metrics collected is reported in Tab.2, while rationales of the
selection for those publicly available is given in §3.3.

Page: For each page, we record 15 features that concerns it (e.g., its
URL, revision ID, size, etc.) and that thus are critical from a privacy
point of view. We additionally record the time lapse at which the
survey is shown to users, which is instead innocuous.

Performance: Since S ⊂ T , then all the 32 navigation-timing
performance-related metrics (such as DOM, PLT, TTI, TTFP, con-
nection duration, number of HTTP redirect, DNS wait time, SSL
handshake time, etc.) are also collected. Finally, we compute the
page download speed which is a simple, yet non linear, transforma-
tion of page size and connection duration. These informations are
specific to page views, and are less critical to be shared.

User: The 32 collected user-related metrics include the browser,
device and OS families. Additionally, we know whether users are
logged in Wikipedia, if they are accessing Wikipedia through a
tablet device and the number of edits that users have made (coarse
bins). These informations are of course highly critical.

Environment: The 36 environmental collected features pertain
time, network, geolocation and techno-economic aspects. Except
for the time information, directly available from the survey query,
we extensively use external data to extract environmental features.



Table 2: Summary of the available/collected (A/C) features
that are associated to each users’ survey response. The mu-
tual information between the survey answer and A/C fea-
tures in the class is reported as a boxplot.

Class A/C Sample features MI(x,y)

Page 2/15 Page ID, Page size,

Survey viewtime, etc.

Performance 26/32 DOM, PLT, TTI

TTFP, RSI, etc.

User 21/32 Device, Browser, OS,

editCountBucket, etc.

Environment 12/36 Connection Type,

Time, Geolocation, etc.

Overall 61/115

As for the network, we leverage MaxMind [4] for IP to ASN and
ISP mappings and for geolocation at country (and city) granular-
ity. ISP and ASN mappings are potentially interesting as it can be
expected that performances (for the same access technology) vary
across ISPs (access technology is also available for about 2/3 of the
samples). Concerning geolocation, whereas databases are known
not to be reliable for city-level geolocation of server addresses [38],
they are generally sufficiently accurate for resolving customer IP
addresses, and especially when only ISO-3166-2 country-level preci-
sion is required. Country-level precision also allows us to relatively
compare performances across users in the same environment, i.e.,
we normalize the page download speed with respect to the me-
dian per-country speed observed in our dataset (in terms of ratio,
absolute and relative error).

Additionally, ties between country wealth and network traffic
volumes have been established in the literature (particularly, de-
viation from expected volume [42]): it is thus worth investigating
whether there also exist ties between wealth and users’ impatience.
We use the Gross Domestic Product (GDP) information made avail-
able by theWorld Bank Open Data project [5]. The per-country eco-
nomic features we consider (namely, per-country GDP, per-country
per-capita GDP, etc.) are expressed in terms of Geary-Khamis dol-
lars, which relate to the purchasing power parity, i.e, how much
money would be needed to purchase the same goods and services
in two countries. The rationale in so doing is that, albeit Web users
perception is tied to psychophysics laws [39], there may be envi-
ronmental conditions tuning this law differently in each country.
For instance, a fixed amount of delay may have a smaller perceptual
value to users of countries with poor Internet access which GDP-
related features might capture: e.g., in other words, one can expect
users in a high-GDP country to have better average performance
and thus be more impatient than users from a low-GDP one.

Finally, we expect user-home gateways [43] and particularly
end-user devices [19, 34] to have a direct impact on the overall
performance. As such, we complement the ISP-level view with

a device-level information. Particularly, we harvest the Web [6]
to find techno-economic information about user devices and in
particular, collect device CPU, memory and pricing2 information.
Intuitively, this information complements the per-country GDP
information as, e.g., there may be further perceptual differences
between users with a costly smartphone in low-GDP vs high-GDP
countries. We recognize that device CPU and memory specs are
only an upper-bound of the achievable performance, as it is the
mixture of applications installed and running on a device that deter-
mine the amount of available CPU and RAM resources, from which
user perception will be ultimately affected [19, 34]. Missing this in-
formation on a per-sample basis, we attempt to at least construct the
per-device statistics, by considering navigation timing information
of a large representative sample of Wikipedia users. Particularly, we
consider the month of August 2018 during which we observe over
30 million navigation time samples from 29,336 different devices,
including all 2,716 devices in our survey. We then construct deciles
of per-device performance (e.g., of page load time and similar tim-
ing information): indeed, it can be expected that users of knowingly
slow devices be less impatient, which this additional data source
could provide.

3.3 Ethics
The dataset we collect contains obviously sensitive information
allowing to deanonymize Wikipedia visitors (such as IP addresses,
version of their browser and handsets), as well as linking them
to the content they visited (e.g., page, revision ID, time of their
visit, etc.). Despite the dataset release policy explicitly forbids user
deanonymization, in the interest of respecting personal privacy we
have to obscure information so to render user deanonymization as
hard as possible, while still allowing meaningful information to be
extracted from the data.

Method: Specifically, we opt for an approach where we transform
data in a non bijective way (e.g., IP to ASN and ISP mappings
that provide network-related properties, while preventing user
deanonymization at the same time), or aggregate at a sufficiently
coarse grain (e.g., country-level geolocation; obfuscation of browser
major/minor version; aggregation of unpopular devices, etc.). For
the same reason, we decide to aggregate time-related information at
a coarse-grain (hour-level) and drop most content-related features
(e.g., page ID). We quantize the page size with a resolution of 10KB,
to also make it hard to reverse-engineer which page was visited. We
maintain most of the navigation timing related performance, that
have the highest mutual information, which we obfuscate wherever
necessary (e.g., given that with precise PLT and download speed
one could easily reverse engineer the page size, and thus the content,
we quantize the download speed in steps of 100Kbps). We point out
that, since the Wikimedia feature vetting process is still ongoing at
time of writing, shall the bag of available features ultimately differ
from the one described here, it will be properly documented.

Results: As a consequence, this loss of information potentially has

2Note that we collect pricing information at the time of our query, and not at the
time when the device was actually bought; we also ignore price differences among
countries, and per-ISP offer bundles.
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Figure 2: Quantile-quantile plot of PLT statistics for differ-
ent sets (T ⊃ S ⊃ A = A+ ∪ A ′ ∪ A−).

an impact on the global prediction accuracy, which we assess in §4:
at the same time, from results presented in Tab. 2, we can expect this
effect to be rather limited. Indeed, Tab. 2 reports the number of the
publicly available out of the collected (A/C) features in each class
(second column), and additionally reports boxplots of the mutual
informationMI (x ,y) between features in the class and the survey
answer (last column).MI expresses the amount of information (in
bits) that can be obtained about the survey answers through the
observed variable. Tab. 2 shows that, while we only report about half
of the collected features, the available ones overall have a higher
MI (particularly, note that the 25th percentile, median and 75th
percentile are higher in the available feature set, and the feature
having the maximum MI is also exported). Particularly, under this
angle it is fortunate that features belonging to the performance
class, which are those exhibiting the highest mutual information
with the user grade, are also the least critical to share.

3.4 Validity of the collection methodology
Despite our care in engineering the survey questioning process,
we cannot exclude a-priori the existence of bias in the user survey
answer process. For instance, users might refrain to answer when
the page loading experience was positive, and be more willing to
express their opinion in case of bad experience, which would lead
to under-estimate the user satisfaction.

To assess whether our survey collection methodology yields to
such (or other) biases, we compare three sets of page view expe-
riences, namely (i) the set T where we record navigation timing
information from the browser (ii) the set S where users have been
shown the survey (iii) the setA where users have actually answered
to the survey. Finally, we further slice the set of answered surveys
A according to the answer in three additional datasets with (iv)
positive A+ , (v) neutral A0 and (vi) negative A− grades.

Among the numerous features we collect, without loss of gener-
ality we now limitedly consider the Page Load Time (PLT) distri-
bution. Since S ⊂ T is selected with uniform random sampling, by
construction we have that S and T are statistically equivalent as
far as individual features, such as PLT, are concerned. However, in
case where users decision to answer to the survey would be biased
by the performance of the page, then the PLT statistics should differ

among the set of displayed S vs answered A surveys. The right-
side of Fig. 2 reports a quantile-quantile (QQ)-plot of the empirical
PLT distribution, using quantiles of S on the x-axis and T , A on
the y-axis, from which one can clearly remark the absence of such
bias.

Conversely, one would expect that, shall the PLT affect the actual
grading of the browsing experience, then PLT statistics should differ
among the A+ ∪ A0 ∪ A− = A sets. This is shown in the left-
side of Fig. 2, comparing the quantiles of the answer set A on the
x-axis to its per-grade slices on the y-axis. Several remarks are in
order. First, it can clearly be seen that browsing experience with
negative scores fall above the equality line, confirming as expected
that pages with longer download time yield to poor experience.
Second, similar considerations hold for neutral (slightly above) and
positive (slightly below) answers, although they are less visible –
in part, this is due since positive grades represent the bulk of the
answers |A+ |/|A| = 84.8%, for which the PLT statistics of A+
and A are mechanically more similar (we will take care of class
imbalance when appropriate later on in §4). Third, notice that a
range of PLT values are present in the set of positive, neutral and
negative answers, indicating as expected that the PLT alone cannot
fully capture user perception.

4 USER FEEDBACK PREDICTION
Problem formulation: Disregarding the neutral scores, we now
build data-driven models to forecast user answers. This allows to
turn the problem into a binary classification one: this simple formu-
lation enables immediate statements of performance objective, that
we express in terms of the classic information retrieval metrics.

Clearly, from an operational standpoint a conservative estima-
tion of user satisfaction is preferable. Indeed, the service operator
wants to avoid that a malfunctioning service that is truly affecting
user experience goes undetected, as when the ratio of dissatisfied
users increases above a given level this can prompt alert to repair
or ameliorate the service. In our settings, conservative prediction
results translate into maximizing the recall of negative scores.

Reference classification results: Given the class imbalance, we
have to preliminarily downsample the dataset3: indeed, given that
after discarding neutral scores 92% of the users are satisfied, a naïve
0-R classifier that just learns the relative frequency of the scores
and systematically answers with the majority class, would achieve
0.92 accuracy – but would entirely miss negative scores, having
thus a null A− recall. Hence, a more appropriate baseline for recall
of unsatisfied users is that of a uniform random selection.

Fig. 3 reports a confusion matrix, additionally highlighting the
average accuracy, precision and recall of the unsatisfied users. Re-
sults are gathered on all the 115 collected features with a 20-trees
random forest [13] on a 10-fold validation using 80% of the sam-
ples for training. We obtain very similar results with XGBoost [17],
with a slightly higher accuracy but lower A− recall, which we do
not report to avoid cluttering the pictures. Prediction outcome is
clearly deceiving and only slightly better than the naïve baseline,
despite the relatively large number of features collected: only 62%

3We prefer to avoid the diametrically opposite approach of synthetically generating
users score, which is in stark contrast with the very same nature of our work.
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Figure 3: Classification results: Confusion matrix for all
collected features as a reference (top) and performance ob-
tained by limiting the (a) 61 available features, (a’) 26 fea-
tures of the performance class, and restricting the attention
to (b) Chrome-only browser, (c) Russian population (d) An-
droid OS and (e) top-1000 pages (and combinations thereof).

of the unsatisfied users are correctly captured, with a precision of
0.59. Interestingly, not shown in the picture, performance on the
remaining dataset, i.e., the set of positive scores filtered out due to
class imbalance, remains consistent with an accuracy of 0.65.

Feature subsampling: We next consider how the classification
results changewith respect to the above referencewhen considering
only the 61/115 publicly available features, which is shown in Fig. 3-
(a): as expected, since features in the available set are fewer but
with better mutual information, classification results are practically
unaffected. We reduce this set even further by only considering the
26 features of the performance class in (a’), which shows a slightly
higher, but still very limited, reduction of classification performance:
on the one hand, performance-related features consistently rank
high in terms of Gini importance, though on the other hand they
lack discriminative power for telling user answers apart.

Dataset subsampling:We finally spatially condition the dataset,
investigating whether classification performance mechanically im-
proves by reducing the heterogeneity in the dataset, in an attempt
to recreate more homogeneous conditions as usually done in the
lab studies. Particularly, (a·b) uses publicly available features and
restrict the attention to the most popular browser, namely Chrome,
considering both mobile and desktop flavors. In (a·c) we instead
restrict to users of the prevalent country, and in (a·d) to Android
users. We also combine these filters altogether (a·b·c) and (a·b·c·d),
and finally consider (e) the top-1000 pages in our dataset. Clearly,
conditioning the dataset implies that a smaller fraction of origi-
nal dataset is available, which we also have to re-balance (solid
black line in Fig. 3): in turn, confidence intervals for the metrics
of interest increase for decreasing dataset fractions, which is ex-
pected. Yet, it is easy to gather that classification performances are
only minimally affected in all the above cases, so that the state-of-
the performance metrics we collect are apparently not enough to
discriminate satisfied vs unsatisfied users.

5 DISCUSSION
In this paper we engineer, collect and (plan to) share at [7, 8] user
survey scores pertaining to the quality of their Web browsing expe-
rience. Out of over 1.7 million queries, we gather over 62k answers
corresponding to either positive (84.8%), neutral (7.7%) or negative
(7.5%) experiences. We then develop data driven models to predict
user scores: under this angle, the most important (and equally dis-
turbing) takeaway is that it is surprisingly hard to predict even a
very coarse-grained indication of user satisfaction. This can be tied
in part to the lack of more informative indicators in our dataset,
and also raises a number of interesting community-wide challenges,
which we discuss next.

Collection and validation methodologies:We remark that this
work is the first to collect user feedback from real users in real
browsing activity, from an operational deployment. This is in stark
contrast with most lab research, where volunteers or crowdwork-
ers are exposed to a very limited heterogeneity (e.g., single de-
vice/browser), are not carrying on a browsing activity (e.g., A/B
testing uses videos) and are not asked about their satisfaction but
about other metrics as a proxy (e.g., which video finished first?).
We argue that lab/crowdsourcing experiments and collection in
the wild should coexist. Particularly, we argue that surveys such as
those we are carrying on should be kept running continuously, as it
is commonplace for VoIP applications that regularly poll their users
for a QoE opinion. Operating continuously would lower barriers
for further experiments [10], empower website operators with a
very relevant performance indicator for their service, informing
them in near-real time about impact of new features deployment,
and ultimately helping to ameliorate data-driven models.

RSI: not needed, or not enough ?: Concerning Web user QoE
metrics, this study seems to suggest a poor discriminative power
of the RumSpeedIndex (RSI) so as to predict users scores, at least
for Wikipedia users. In part, this may be due to the structure of
Wikipedia pages (where, e.g., text may be more prevalent that in
other pages in the Alexa top 100 typically considered in similar
studies, see §2), which nevertheless raises the question so as to
whether it is possible to design more specific metrics that are better
fit to the spatial structure of any given page.

Per-device statistics: Given that “computation activities are the
main bottleneck when loading a page on mobile browsers” [34],
collecting per-device statistics [19] seems a mandatory step. Un-
fortunately, average per-device performance we considered in this
work are not telling enough, as they merely report the resource
upper-bound (i.e., CPU and RAM capacity) as opposite to the actual
state of the device (i.e., free RAM and available CPU cycles) corre-
sponding to the page view that the user answered about – which
could hopefully ameliorate prediction performance.

ACKNOWLEDGEMENTS
We thank Tilman Bayer, Leila Zia and Nuria Ruiz from the Wiki-
media Foundation and Saint Johann from the Russian Wikipedia
community, whose input and help shaped this work.



REFERENCES
[1] [n. d.]. https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/

metrics/speed-index.
[2] [n. d.]. https://github.com/WPO-Foundation/RUM-SpeedIndex.
[3] [n. d.]. https://www.alexa.com/topsites.
[4] [n. d.]. https://www.maxmind.com/.
[5] [n. d.]. https://data.worldbank.org/.
[6] [n. d.]. https://www.gsmarena.com.
[7] [n. d.]. https://webqoe.telecom-paristech.fr.
[8] [n. d.]. https://meta.wikimedia.org/wiki/Research:Study_of_performance_

perception_on_Wikimedia_projects.
[9] 2010. World Wide Wait. https://www.economist.com/science-and-technology/

2010/02/12/world-wide-wait.
[10] Eytan Bakshy, Dean Eckles, and Michael S. Bernstein. 2014. Designing and

Deploying Online Field Experiments. In Proc. of the 23rd International Conference
on the World Wide Web (WWW). https://doi.org/10.1145/2566486.2567967

[11] Athula Balachandran, Vaneet Aggarwal, Shobha, He Yan, et al. 2014. Modeling
Web Quality-of-experience on Cellular Networks. In Proc. ACM MOBICOM. ACM.
https://doi.org/10.1145/2639108.2639137

[12] Enrico Bocchi, Luca De Cicco, and Dario Rossi. 2016. Measuring the Quality of
Experience of Web Users. Proc. ACM SIGCOMM, Internet-QoE Workshop (2016).
https://doi.org/10.1145/3027947.3027949

[13] Leo Breiman. 2001. Random Forests. Machine Learning 45, 1 (oct 2001), 5–32.
https://doi.org/10.1023/A:1010933404324

[14] Jake Brutlag, Zoe Abrams, and Pat Meenan. [n. d.]. Above the fold time: Mea-
suring Web page performance visually. http://conferences.oreilly.com/velocity/
velocity-mar2011/public/schedule/detail/18692.

[15] Michael Butkiewicz, Daimeng Wang, Zhe Wu, Harsha V. Madhyastha, and Vyas
Sekar. 2015. Klotski: Reprioritizing Web Content to Improve User Experience on
Mobile Devices. In Proc. of the USENIX Conference on Networked Systems Design
and Implementation (NSDI).

[16] Vint Cerf, Van Jacobson, Nick Weaver, and Jim Gettys. 2012. BufferBloat: what’s
wrong with the internet? Commun. ACM 55, 2 (2012), 40–47. https://doi.org/10.
1145/2076450.2076464

[17] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting
System. In Proc. of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 785–794. https://doi.org/10.1145/2939672.2939785

[18] Diego Da Hora, Alemnew Asrese, Vassilis Christophides, Renata Teixeira, and
Dario Rossi. 2018. Narrowing the gap between QoS metrics and Web QoE using
Above-the-fold metrics. In Proc. Passive and Active Measurement Conference (PAM).
https://doi.org/10.1007/978-3-319-76481-8

[19] MalleshamDasari, Santiago Vargas, Arani Bhattacharya, Aruna Balasubramanian,
Samir R. Das, and Michael Ferdman. 2018. Impact of Device Performance on
Mobile Internet QoE. In Proc. ACM Internet Measurement Conference. https:
//doi.org/10.1145/3278532.3278533

[20] Zhiheng Wang (Ed.). 2012. Navigation Timing. http://www.w3.org/TR/2012/
REC-navigation-timing-20121217/. In "W3C Recommendation".

[21] Sebastian Egger, Peter Reichl, Tobias Hoßfeld, and Raimund Schatz. 2012. “Time is
bandwidth”? Narrowing the gap between subjective time perception and Quality
of Experience. In Proc. IEEE International Conference on Communications (ICC).
https://doi.org/10.1109/ICC.2012.6363769

[22] Jeffrey Erman, Vijay Gopalakrishnan, Rittwik Jana, and K. K. Ramakrishnan.
2013. Towards a SPDY’Ier Mobile Web?. In ACM CoNEXT. 303–314. https:
//doi.org/10.1145/2535372.2535399

[23] Markus Fiedler, Tobias Hoßfeld, and Phuoc Tran-Gia. 2010. A generic quantitative
relationship between quality of experience and quality of service. IEEE Network
24, 2 (2010), 36–41. https://doi.org/10.1109/MNET.2010.5430142

[24] Qingzhu Gao, Prasenjit Dey, and Parvez Ahammad. 2017. Perceived Performance
of Top Retail Webpages In the Wild: Insights from Large-scale Crowdsourcing of
Above-the-Fold QoE. In Proc. ACM SIGCOMM, Internet-QoE Workshop. https:
//doi.org/10.1145/3098603.3098606

[25] Tobias Hoßfeld, Poul E Heegaard, Martín Varela, and Sebastian Möller. 2016. QoE
beyond the MOS: an in-depth look at QoE via better metrics and their relation to
MOS. Quality and User Experience 1, 1 (2016), 2.

[26] ITU-T. 2014. Estimating end-to-end performance in IP networks for data applica-
tion.

[27] ITU-T. 2014. QoE factors in web-browsing.

[28] Conor Kelton, Jihoon Ryoo, Aruna Balasubramanian, and Samir R Das. 2017.
Improving User Perceived Page Load Time Using Gaze. In Proc. of the USENIX
Conference on Networked Systems Design and Implementation (NSDI).

[29] Yun Ma, Xuanzhe Liu, Shuhui Zhang, Ruirui Xiang, Yunxin Liu, and Tao Xie.
2015. Measurement and Analysis of Mobile Web Cache Performance. In Proc.
of the 24th International Conference on the World Wide Web (WWW). https:
//doi.org/10.1145/2736277.2741114

[30] Robert B Miller. 1968. Response time in man-computer conversational transac-
tions. In Proc. AFIPS Fall Joint Computer Conference. ACM.

[31] Ben Miroglio, David Zeber, Jofish Kaye, and Rebecca Weiss. 2018. The Effect of
Ad Blocking on User Engagement with the Web. In Proc. of the 27th International
Conference on the World Wide Web (WWW). https://doi.org/10.1145/3178876.
3186162

[32] Yashar Moshfeghi and Joemon M. Jose. 2013. On Cognition, Emotion, and In-
teraction Aspects of Search Tasks with Different Search Intentions. In Proc.
of the 22nd International Conference on the World Wide Web (WWW). https:
//doi.org/10.1145/2488388.2488469

[33] Fiona Fui-Hoon Nah. 2004. A study on tolerable waiting time: how long are web
users willing to wait? Behaviour & Information Technology 23, 3 (2004), 153–163.

[34] Javad Nejati and Aruna Balasubramanian. 2016. An In-depth Study of Mobile
Browser Performance. In Proc. of the 25th International Conference on the World
Wide Web (WWW). https://doi.org/10.1145/2872427.2883014

[35] Ravi Netravali, Anirudh Sivaraman, Keith Winstein, Somak Das, Ameesh Goyal,
and Hari Balakrishnan. 2014. Mahimahi: a lightweight toolkit for reproducible
web measurement. In ACM SIGCOMM Computer Communication Review, Vol. 44.
ACM, 129–130. https://doi.org/10.1145/2740070.2631455

[36] Jakob Nielsen. [n. d.]. Response Times: The 3 Important Limits. https://www.
nngroup.com/articles/response-times-3-important-limits/.

[37] Ashkan Nikravesh, Hongyi Yao, Shichang Xu, David Choffnes, and Z. Morley
Mao. 2015. Mobilyzer: An Open Platform for Controllable Mobile Network
Measurements. In Proc. ACM MobiSys. https://doi.org/10.1145/2742647.2742670

[38] Ingmar Poese, Steve Uhlig, Mohamed Ali Kaafar, Benoit Donnet, and Bamba
Gueye. 2011. IP Geolocation Databases: Unreliable? ACM SIGCOMM CCR 41, 2
(2011). https://doi.org/10.1145/1971162.1971171

[39] Peter Reichl, Sebastian Egger, Raimund Schatz, and Alessandro D’Alconzo. 2010.
The logarithmic nature of QoE and the role of the Weber-Fechner law in QoE
assessment. In Proc. IEEE International Conference on Communications (ICC).
https://doi.org/10.1109/ICC.2010.5501894

[40] Sanae Rosen, Bo Han, Shuai Hao, Z. Morley Mao, and Feng Qian. 2017. Push
or Request: An Investigation of HTTP/2 Server Push for Improving Mobile
Performance. In Proc. of the 26th International Conference on the World Wide Web
(WWW). https://doi.org/10.1145/3038912.3052574

[41] Philipp Singer, Florian Lemmerich, Robert West, Leila Zia, Ellery Wulczyn,
Markus Strohmaier, and Jure Leskovec. 2017. Why We Read Wikipedia. In
Proc. of the 26th International Conference on the World Wide Web (WWW).
https://doi.org/10.1145/3038912.3052716

[42] Chris Smith-Clarke and Licia Capra. 2016. Beyond the Baseline: Establishing the
Value in Mobile Phone Based Poverty Estimates. In Proc. of the 25th International
Conference on the World Wide Web (WWW). https://doi.org/10.1145/2872427.
2883076

[43] Srikanth Sundaresan, Walter de Donato, Nick Feamster, Renata Teixeira, Sam
Crawford, and Antonio Pescapè. 2011. Broadband Internet Performance: A View
from the Gateway. In ACM SIGCOMM. 134–145. https://doi.org/10.1145/2018436.
2018452

[44] Matteo Varvello, Jeremy Blackburn, David Naylor, and Konstantina Papagiannaki.
2016. EYEORG: A Platform For Crowdsourcing Web Quality Of Experience
Measurements. In Proc. ACM CoNEXT. https://doi.org/10.1145/2999572.2999590

[45] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy, and David
Wetherall. 2014. How Speedy is SPDY?. In Proc. of the USENIX Conference on
Networked Systems Design and Implementation (NSDI).

[46] Xiao Sophia Wang, Arvind Krishnamurthy, and David Wetherall. 2016. Speeding
upWeb Page Loads with Shandian. In Proc. of the USENIX Conference on Networked
Systems Design and Implementation (NSDI).

[47] Torsten Zimmermann, Jan Ruth, Benedikt Wolters, and Oliver Hohlfeld. 2017.
How HTTP/2 Pushes the Web: An Empirical Study of HTTP/2 Server Push. In
Proc. IFIP Networking. https://doi.org/10.23919/IFIPNetworking.2017.8264830

[48] Torsten Zimmermann, Benedikt Wolters, and Oliver Hohlfeld. 2017. A QoE
Perspective on HTTP/2 Server Push. In Proc. ACM SIGCOMM, Internet-QoE
Workshop. https://doi.org/10.1145/3098603.3098604

https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://github.com/WPO-Foundation/RUM-SpeedIndex
https://www.alexa.com/topsites
https://www.maxmind.com/
https://data.worldbank.org/
https://www.gsmarena.com
https://webqoe.telecom-paristech.fr
https://meta.wikimedia.org/wiki/Research:Study_of_performance_perception_on_Wikimedia_projects
https://meta.wikimedia.org/wiki/Research:Study_of_performance_perception_on_Wikimedia_projects
https://www.economist.com/science-and-technology/2010/02/12/world-wide-wait
https://www.economist.com/science-and-technology/2010/02/12/world-wide-wait
https://doi.org/10.1145/2566486.2567967
https://doi.org/10.1145/2639108.2639137
https://doi.org/10.1145/3027947.3027949
https://doi.org/10.1023/A:1010933404324
http://conferences.oreilly.com/velocity/velocity-mar2011/public/schedule/detail/18692
http://conferences.oreilly.com/velocity/velocity-mar2011/public/schedule/detail/18692
https://doi.org/10.1145/2076450.2076464
https://doi.org/10.1145/2076450.2076464
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1007/978-3-319-76481-8
https://doi.org/10.1145/3278532.3278533
https://doi.org/10.1145/3278532.3278533
http://www.w3.org/TR/2012/REC-navigation-timing-20121217/
http://www.w3.org/TR/2012/REC-navigation-timing-20121217/
https://doi.org/10.1109/ICC.2012.6363769
https://doi.org/10.1145/2535372.2535399
https://doi.org/10.1145/2535372.2535399
https://doi.org/10.1109/MNET.2010.5430142
https://doi.org/10.1145/3098603.3098606
https://doi.org/10.1145/3098603.3098606
https://doi.org/10.1145/2736277.2741114
https://doi.org/10.1145/2736277.2741114
https://doi.org/10.1145/3178876.3186162
https://doi.org/10.1145/3178876.3186162
https://doi.org/10.1145/2488388.2488469
https://doi.org/10.1145/2488388.2488469
https://doi.org/10.1145/2872427.2883014
https://doi.org/10.1145/2740070.2631455
https://www.nngroup.com/articles/response-times-3-important-limits/
https://www.nngroup.com/articles/response-times-3-important-limits/
https://doi.org/10.1145/2742647.2742670
https://doi.org/10.1145/1971162.1971171
https://doi.org/10.1109/ICC.2010.5501894
https://doi.org/10.1145/3038912.3052574
https://doi.org/10.1145/3038912.3052716
https://doi.org/10.1145/2872427.2883076
https://doi.org/10.1145/2872427.2883076
https://doi.org/10.1145/2018436.2018452
https://doi.org/10.1145/2018436.2018452
https://doi.org/10.1145/2999572.2999590
https://doi.org/10.23919/IFIPNetworking.2017.8264830
https://doi.org/10.1145/3098603.3098604

	Abstract
	1 Introduction
	2 Background
	3 User feedback collection
	3.1 Technical aspects of the survey collection
	3.2 Collected features
	3.3 Ethics
	3.4 Validity of the collection methodology

	4 User feedback prediction
	5 Discussion
	References

