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Abstract—Web browsing is one of the most popular ap-
plications for both desktop and mobile users. A lot of effort
has been devoted to speedup the Web, as well as in designing
metrics that can accurately tell whether a webpage loaded
fast or not. An often implicit assumption made by industrial
and academic research communities is that a single metric
is sufficient to assess whether a webpage loaded fast. In this
paper we collect and make publicly available a unique dataset
which contains webpage features (e.g., number and type of
embedded objects) along with both objective and subjective
Web quality metrics. This dataset was collected by crawling
over 100 websites—representative of the top 1 M websites in
the Web—while crowdsourcing 6,000 user opinions on user
perceived page load time (uPLT). We show that the uPLT
distribution is often multi-modal and that, in practice, no
more than three modes are present. The main conclusion
drawn from our analysis is that, for complex webpages,
each of the different objective QoE metrics proposed in
the literature (such as AFT, TTI, PLT, etc.) is suited to
approximate one of the different uPLT modes.

Index Terms—Web Performance, Quality Of Experience,
Measurements.

I. INTRODUCTION

A good Quality of Experience (QoE) on the Web
is essential for both content providers and consumers.
QoE directly affects end-users’ willingness to visit a
webpage [1] as well as content providers’ business rev-
enues [2]. Both industry (e.g., QUIC, SPDY, and HTTP/2)
and academia [3], [4], [5], [1] have made significant effort
to design tools and novel protocols to reduce page load
times as the main factor that determines Web QoE is how
fast a page loads [6].

Originally, quality of user experience on the Web was
approximated using simple performance metrics like time-
to-first-byte (TTFB) and the browser onLoad event. As
modern webpages are composed of hundreds of different
objects, these metrics can typically capture only the lower
and upper bounds of the user perception on page load
time. This limitation has motivated the introduction of a
number of recent metrics to better capture user experi-
ence on the Web, such as Above-the-Fold (ATF) [7] and
SpeedIndex [8].
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Despite all these efforts, the question regarding how
well existing single-valued metrics capture the user per-
ception of page load time remains open. We define user
perceived Page Load Time (uPLT) as the time when a user
considers the webpage to be loaded and ready to browse.
With few exceptions, almost the entire previous industrial
and academic efforts make the implicit assumption that a
single-valued metric can capture the uPLT across users –
or, equivalently, that the distribution of uPLT of a given
page across users is uni-modal. Recent studies have chal-
lenged this assumption, showing that users rarely agree on
a single uPLT [9], [10]. However, the multi-modality of
uPLT was not the main focus of these studies, and as such
it was not studied in depth.

UPLT multi-modality is rooted in many factors, such as
personal preferences with respect to what is considered
important on a webpage, e.g., text rather than images,
carousels of elements, popups or ads. Fig. 2 illustrates
this issue when asking for feedback from 54 recruited par-
ticipants regarding the uPLT of www.booking.com. About
40% of users believe uPLT to be around 2 seconds,
another 40% indicates uPLT≈ 3.7 seconds and nearly 20%
report a uPLT≈ 9.1 seconds. These uPLT values appear
in conjunction with distinct webpage loading events; we
report the snapshot of these events in Fig. 1. This example
illustrates the challenges of measuring uPLT, and raises
questions about which among the numerous objective Web
QoE metrics (e.g., PLT, TTFP, ATF [7]) is more suitable
as a proxy for these remarkably different user opinions.

To address these questions, we collect a comprehensive
data set of webpage features (e.g., number and type of
embedded objects) along with both objective and subjec-
tive Web quality metrics. We find that around 50% of
the webpages in our study present a multi-modal uPLT
distribution and that, in practice, three modes are sufficient
to accurately describe uPLT distribution. Moreover, we
show that the number of images and the number of objects
in a webpage can help in predicting uPLT modality. To
promote cross comparison and enable further studies, we
make this dataset publicly available [11].

This paper is organized as follows. After overviewing
the related work (Sec. II), we describe the methodology
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Fig. 1: Relevant snapshots of the www.booking.com rendering process corresponding to the different modes that are
visible in the distribution reported in Fig.2. Notice that the “above the fold” content is almost all rendered in (a) and
fully rendered in (b). At time (c) a popup arise, inviting users to login in the website.

Fig. 2: uPLT distribution for www.booking.com, highlight-
ing the issue that users do not agree on a single time instant
to identify completion of webpage rendering.

used to produce the representative set of webpages for our
analysis and how we employed the Eyeorg platform [10]
to crowdsource uPLT on these pages (Sec. III). Next,
we thoroughly characterize the collected user feedback
(Sec. IV), rigorously quantifying violations of the hy-
potesis that uPLT is uni-modal and finally contrast uPLT
modes with objective QoE metrics. Finally, we discuss our
findings (Sec. V) and put results of this work in perspective
with recent related work.

II. RELATED WORK

Web QoE metrics fall in two main categories: objective
and subjective. Our work span both categories since we
crowdsource user feedback (subjective), which we use
to benchmark objective Web quality metrics. We briefly
survey previous work related to each category.

Objective – These metrics rely on measurable data (e.g.,
network, browser events) capturing Web quality [12], [13],
[14], [15], [8]. objective metrics of interest for Web user
QoE can be further categorized in two classes: metrics that
(i) track specific events of the W3C Navigation timing [16]
or (ii) integrate a residual completion function over the full
set of events.

On the one hand, notable examples of tracking metrics
are the Time to The First Byte (TTFB), the Time to
The First Paint (TTFP), the time at which parsing of
the Document Object Model (DOM) is completed, the
Time To Interaction (TTI), the time at which the content
Above-the-Fold (ATF) is rendered [17], and the time at
which the page was fully loaded (PLT).1 Most of these
metrics are directly available from the browser Navigation
Timing [16] or can be inferred from packet/flow-level
traffic [18], [19] as proxy of user experience.

On the other hand, integration metrics are instead
founded on the idea that one page can render faster than
another despite finishing loading at the same “time” (e.g.,
in terms of PLT). These metrics introduce a function
that integrate all events of the waterfall representing the
visual progress of the page, and approximate the rendering
process by using visual or byte-level completion ratios
over time. SpeedIndex [8] and its variants [20], [13], [15]
fall in this class of metrics.

Subjective – Subjective metrics rely on directly collecting
responses from users regarding different questions related
to Web QoE.

Different approaches have been proposed in the litera-
ture. Bocchi et al. [21] asked volunteers to rate page load
performance on a testbed using the 5-grade Absolute Cat-
egory Ranking (ACR) score. Salutari et al. [22] collected
“user acceptance” [23] by asking Wikipedia users about
their experience, using a binary satisfied/unsatisfied rating.
These studies rate the user experience for each individual
website access, but prove challenging when aggregating
opinions across users, specially when measurements are
conducted in the wild.

In contrast, SpeedPerception [15], Eyeorg [10], and
WebGaze [9] ask users to comment on a video of the
website rendering process. SpeedPerception proposes to
crowdsource the user validation with A/B testing, asking
users about which page loaded faster, while Eyeorg and
WebGaze ask users to directly report the point in time

1PLT corresponds to a browser’s onload event, which indicates that
all of the objects in the document are in the DOM, and all the images,
scripts, links and sub-frames have finished loading.



when they consider that the page finished loading. This
approach provides a consistent experience to all partici-
pants, regardless of their network connectivity and device
configurations, making it easier to aggregate and interpret
results. In this paper, we leverage Eyeorg [10] for the
collection of user opinions.

Finally, ties between objective and subjective Web QoE
metrics have been established in the literature [21], [14],
[15], [24], [25], [26]. These studies attempt to capture
the “wisdom of the crowd” by aggregating the subjective
feedback using the mean or the median, while implicitly
assuming uni-modality of the underlying user opinion
distribution. In this work, we challenge this common
assumption and instead of attempting to define a single
best metric, we evaluate the value and complementarity
of these metrics in capturing the perception of different
user classes.

III. DATA COLLECTION

To explore the relationship between uPLT and objective
Web QoE metrics we need to (i) collect a comprehensive
dataset comprising “representative” webpages, and (ii)
crowdsource feedback from real users on uPLT. We first
devise a novel methodology to identify a limited number
(e.g., 100) of webpages to test from the Cisco’s Umbrella
top-1M list [27] (Sec. III-A). Second, we automate the
collection of webpage characteristics and objective Web
QoE metrics from Chrome-based browsers (Sec. III-B).
Finally, we conduct an Eyeorg [10] crowdsourced cam-
paign to ask users when each webpage finished loading
(Sec. III-C). We make the entire dataset collected publicly
available [11].

A. Representative Webpage Selection

A recurring concern in Web performance research is
how to select a meaningful set of webpages to study. Due
to the sheer size of the Web, some sort of sampling needs
to be introduced. To study the Web, researchers often
resort to the most popular webpages from Alexa or Cisco,
or a combination of popular and unpopular webpages.
While it is important to sample popular webpages, since
they attract the majority of the traffic, unpopular webpages
might have a completely different set of characteristics
yielding to different results. In this paper we argue that
popularity should not prime over diversity of webpages,
as otherwise the results may lose generality. We therefore
opt for a stratified selection of both popular and diverse
pages by clustering them according to the complexity of
their HTML content.

Initial hitlist: We crawl all URLs from Cisco’s Umbrella
top 1-million list, which became popular in the research
community after Alexa became paywalled, on August
2018. The Umbrella list is generated by tracking the total
number of worldwide DNS requests. The main advantage
of this approach is that this gives us insights not only
on popular top level domains (e.g. wikipedia.org),
but also on popular actual pages with content (e.g.
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Fig. 3: Number of webpages per cluster.

https://en.wikipedia.org/wiki/Main_Page).
However, the Umbrella list also contains URLs that are
the target of automated DNS requests (i.e., not associated
to an actual user request) notably for ads and analytic
services. We additionally find that some webpages on the
list are either no longer valid or implement access control.
By discarding URLs that either never responded to our
request, or returned non-HTML content (e.g., JSON or
XML) we obtain 317,000 valid HTML pages.

Clustering: On this set of webpages, we compute six
features that, as reported by Butkiewicz et. al [28], are
distinctive of the page characteristics and in particular have
high correlation with webpage complexity: page size (in
MB), total number of objects, number of images, CSS,
javascript, and number of distinct origins. Then, we rely
on K-means to find pages of similar complexity. Given
our crowd-measurement budget, we fix K = 100. We
experiment with three standard feature normalization tech-
niques: min-max, mean-std, and a quantile-based feature
normalization, where we transform the original values of
each feature to the quantiles they correspond to in the
dataset (e.g., for amazon.com, page size: 38%, num
imgs: 99%, num domains: 61%).

Fig. 3 reports the number of pages per cluster produced
by K-means, ordered by decreasing cluster size. We
observe that, due to the wide range of values for page
size and number of objects in the dataset (up to 75
and 1,429Mb, respectively), both min-max and mean-std
normalization create several “outlier clusters” near the
extreme ranges of each feature with very few pages (less
than 10), while creating a single overcrowded cluster
for simple and small pages. We note that quantile-based
normalization results in clusters that represent a sizeable
number of pages (the smallest 5 clusters contain between
155 and 347 pages) while at the same time helps in better
representing the fine-grain diversity of relatively small
pages (there is no single giant cluster). Upon a closer
analysis, we put aside 14 clusters that contained a large
number of “error pages”. These cluster included regular
HTML pages reporting 401, customized 404 pages, pages
with valid HTML but no actual content, as well as login
pages. We observe that the 5 largest clusters still represent



30% of all pages: therefore, a stratified selection strategy
helps avoiding oversampling these pages.

Stratified selection: From each of the remaining 86 clus-
ters, we manually pick one webpage for user evaluation
in Eyeorg. We do this by choosing a popular webpage
according to the ranking, i.e., which is simultaneously (i)
the closest to the centroid, (ii) in English language, and
that (iii) does not contain offensive or adult content (e.g.,
porn, gambling), in order to avoid exposing crowdsource
participants to upsetting content.

Given the fair amount of work involved, this list of
“representative” webpages is interesting per se, and we
make it available [11]. Finally, we add 22 handpicked
webpages that we also studied in previous work [14] to
obtain a total of 108 sampled webpages.

B. Objective Web Quality Metrics

For each webpage of the set, we collect the objective
Web quality metrics discussed in Sec. II. We rely on
a Chrome extension [29] to measure all the metrics,
since some metrics require the rendered position of all
objects in the page, cannot be measured from the HAR
file (as opposed to PLT, DOM, TTI, etc.) and thus are
better measured directly from the browser. Further, we use
FFmpeg to record videos of a webpage rendering process.

We instrument a stock version of Chrome
(v68.0.3440.84) with the above extension and attempt
to load the 108 selected webpages, consecutively. For
each load, we set a maximum duration of 15 seconds and
also record webm videos of the rendering process. This is
needed since we then plan to crowdsource users responses
with Eyeorg. Since headless Chrome currently does not
support extensions, we leverage the X virtualframe buffer
Xvfb to allow remote execution without the need for
a physical monitor. We measure each webpage 5 times,
ensuring warm DNS caches, and a clean browser profile at
the beginning of each run. We then select the experiment
(video and set of performance metrics) with the median
PLT among the 5 repetitions.

C. UPLT Crowdsourcing

We measure uPLT via Eyeorg’s timeline experiment [10]
where a participant is asked to “scrub” the video of a
webpage load until when (s)he considers the page to be
ready. We run a single Eyeorg campaign targeting the
above 108 webpages and 1,000 paid participants from
Figure Eight2 (total cost: $120). Each participant evaluates
6 videos—thus generating 6,000 uPLT values or about 54
valid feedbacks per webpage, on average.

In Figure Eight, we request the highest quality partici-
pants. As discussed in the Eyeorg paper, we also filter user
responses using a mix of their engagement (i.e., the time
spent on task) and the quality of their opinions using some
control questions. Eyeorg implements control questions on

2https://www.figure-eight.com/

top of the frame selection helper, a tool that helps the
user “rewinding” her uPLT selection if an equal3 (earlier)
frame is identified. This is needed because, for some users,
it can be hard to scrub a video exactly to the earliest
point associated with a selected frame. For one video out
of six, the frame selection helper suggests the very first
video frame as a rewind option. Users that blindly accept
this suggestion without noticing the obvious difference
between the two frames are considered as potentially
distracted, and their responses are discarded. In total, we
discard 172 users due to low engagement and due to failing
the control questions.

IV. UNDERSTANDING USERS’ FEEDBACK

In order to provide an in-depth characterization of user
feedback, we start our analysis by checking the existence
of multiple modes on the uPLT distribution, considering
for each webpage the valid uPLT feedbacks. Then, we
study the number and parameters of the different modes
exhibited by the uPLT distribution for each webpage.
Finally, we investigate how the complexity of modern
webpages (e.g., number of objects, domains, etc.) and user
browsing behavior may affect uPLT multi-modality.

A. UPLT Distribution Analysis

We next analyze the uPLT distributions to inspect the
presence of multi-modal behaviors. For this purpose, we
rely on a non-parametric statistical test widely used to
assess whether a distribution of real-valued random vari-
ables, such as the uPLT, is likely to be uni-modal [30]. This
test computes the dip statistic as the maximum difference
between the empirical cumulative distribution function
(ecdf), and the uni-modal distribution function that min-
imizes that maximum difference. When we perform the
dip test, we employ the common threshold p < 0.05
to reject the null hypothesis of uni-modality. We find
on our set that 56 webpages are likely to exhibit a uni-
modal distribution of uPLT and 52 a multi-modal one. By
lowering this threshold, the number of likely multi-modal
webpages decreases, e.g., when p < 0.01 only 42 pages
are estimated as multi-modal.

For the webpages found to be likely multi-modal, we
model their uPLT distributions with a Gaussian mixture
model (GMM), i.e., a weighted sum of K independent
Gaussian distributions. The question that naturally arises is
how many Gaussian components K have to be considered
per webpage. By letting the parameter K of the GMM
range from 2 to 10, we observe that the GMM accurately
models the uPLT distribution for K ≥ 3. However, we find
that even for K = 3 some webpages have small modes
(34 webpages have at least one of the three components
with weight lower than 0.05).

We run the goodness-of-fit Kolmogorov-Smirnov test,
with a confidence level of 0.95. The null hypothesis is that
the empirical uPLT and the mixture distribution (which
we sample to obtain the same number of samples as the

3No more than 1% different in a pixel-by-pixel comparison.
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aaaaaaa
Mmass

Mtime Mfirst Msecond Mthird

Mmajor 63% 33% 4%
Mmiddle 29% 38% 33%
Mminor 8% 29% 63%

TABLE I: Breakdown for Mmass =Mtime.

empirical one) with K = 3 come from the same distri-
bution. The result shows that, for more than 70% of the
multi-modal webpages, the null hypothesis is confidently
accepted. Hence, for each likely multi-modal webpage, we
set K = 3 and find the corresponding GMM parameters
from its uPLT distribution: mean, standard deviation, and
weight of each component.

Fig. 4 shows the weights’ distribution of the three
components sorted by their mass, Mmass = [Mmajor,
Mmiddle, Mminor], across the 52 likely multi-modal web-
pages. We observe that the weight ranges from 0.40 to
0.95 for the major component (Mmajor), which represents
on average 69% of users (median 72%), 0.03 to 0.43 for
the middle (Mmiddle) component, and 0.02 to 0.27 for the
minor component (Mminor). For some outlier webpages,
such as booking.com, users are split into multiple well
defined modes of similar size. In the opposite case, there
are webpages such as paperpile.com where nearly all
the users agree on a single uPLT value, with two other
smaller modes (Mmajor,mass = 0.86, Mmiddle,mass =
0.10, Mminor,mass = 0.04).

The uPLT components can alternatively be sorted by
occurring time, in such a way that the user opinion is
split among Mtime = [Mfirst, Msecond, Mthird] on multi-
modal webpages (so that Mfirst refers to the earliest in
time and Mthird to the latest one). By analyzing the modes
defined in these two distinct ways, we can check when
each Mmass mode coincides with each Mtime mode.

Tab. I shows the percentage of occurrences for each of
the 9 couples of Mmass = Mtime (Mmajor = Mfirst,
Mmajor = Msecond, etc.). This gives us information
on which time sorted mode Mtime is more liable to
be the most or least popular one (Mmass). The table
highlights that the majority of users are more likely to

Page Feature µ σ 25% 50% 75%

Size [MB] 854/970 862/1,687 176/136 564/439 1,382/1,145
# Objects 53/81 47/50 17/44 46/76 72/106
# JS 15/21 14/14 5/9 10/19 22/28
# Images 20/34 27/31 4/12 10/26 22/44
# CSS 13/16 10/15 5/6 12/10 16/24
# Domains 7/11 8/9 3/6 4/8 9/14

TABLE II: Statistics of uni-modal/multi-modal pages.

prefer the earliest modes: the major mode Mmajor is
indeed equivalent to the earliest mode Mfirst on 33 pages
(63% of the whole multi-modal webpages set), it is equal
to the second one Msecond on 17 pages (33%), and finally
it is equivalent to the latest third mode Mthird on just 2
pages (4%). Reversely, the minor mode Mminor tends to
rarely coincide with the earliest one Mfirst (8%): it is
actually most of the time equal to the latest mode Mthird

(63%) and sparingly to the second one Msecond (29%).
We can finally conclude that the mapping between mass
and time sorted modes is such that the most popular mode
is generally also the earliest in time and vice versa.

B. Page Characteristics and uPLT

Given that half of the webpages exhibit a multi-modal
uPLT, we investigate which of their characteristics (e.g.,
number of objects, images, domains, etc.) may cause a
split of users’ feedback with respect to when the page is
loaded. For example, ads heavy webpages might be (at
least) bi-modal since some users consider the page to be
loaded before ads are shown, while some others would
wait for the whole content to be retrieved and displayed.

Tab. II illustrates several statistics (average, standard
deviation, 25/50/75th percentile) of the webpage charac-
teristics we considered during our stratified URL selection
(see Sec. III). We can observe that the standard deviation
of the size of multi-modal webpages is double with respect
to that of uni-modal ones (at the 100% percentile we
have 10,338 vs 3,460). We also observe that the mean
number of images and of distinct origin domains for multi-
modal webpages is respectively 34 and 11 compared to
20 and 7 for uni-modal webpages. This is inline with
the intuition that complex webpages are more likely to be
multi-modal. We next inspect how prevalent is advertising
across these websites by matching the content received
against EasyList,4 a list of known advertisement domains.
We find that multi-modal websites contain, on average, 5
times more advertisements than uni-modal websites, likely
segmenting user opinions on uPLT.

We are now interested in assessing the importance of
each of the above features for predicting uPLT multi/uni-
modality of webpages. For this task, we train a Random
Forest Classifier with 25 estimators, which on a 7-fold
cross validation5 achieves an average precision of 0.69

4https://easylist.to/easylist/easylist.txt
5Seven-fold cross-validation ensures that the validation dataset is at

least 15% of the size of the whole dataset.
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values when predicting uni-modal pages.

and an average recall of 0.68. In line with the current
trend towards human interpretable machine learning and
model explainability, we leverage SHAP (SHapley Addi-
tive exPlanations) [31] to understand which features can
better reveal whether a webpage is uni-modal or not. We
report in Fig. 5 the 6 features, sorted by the sum of the
SHAP magnitude values computed for all the webpages.
SHAP values capture the effect of removing a feature
for a given prediction under all possible combinations of
presence or absence of the other features. Hence, they
provide a quantitative insight of the importance of each
feature for the model. The positive x-axis values assess
the impact on the model output for predicting the uni-
modal class, whilst the negative ones refer to the multi-
modal class. We can observe that the two most influential
features are the number of images and the number of
objects present in the webpage. In particular, the lower
the values of these features, the higher their SHAP value
(up to 0.2 for the number of images and 0.15 for number
of objects). In other words, for simple webpages with few
images and objects, users more likely agree on a single
uPLT, making the uPLT distribution uni-modal. Such effect
is less evident for the other webpage properties, where low
and high feature values overlap, causing a decrease in the
impact factors on model prediction, probably due to the
lack of additional data points to train the model. These
findings provide valuable insights for designing webpages
with more predictable user perception. For instance, we
might expect that the uPLT measured via mobile browsers
presents a unimodal distribution, as they generally load
a simplified version of the webpage. We acknowledge
that future studies are needed to further elaborate relevant
design guidelines in this direction.

Finally, we quickly investigate if a difference in per-
formance metrics can also explain the multi-modality of
uPLT. We check whether the time difference between
the early and late events (such as TTI and PLT) of the
page loading process provides strong evidence of multi-
modality. Fig. 6 shows the ecdf of |PLT −TTI| for web-
pages we previously categorized as uni-modal or multi-
modal. We can observe that multi-modal websites are,
overall, characterized by larger |PLT − TTI| differences
compared to uni-modal ones. On the other hand, less than
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Fig. 6: |PLT − TTI| ECDF for uni/multi-modal pages.

RMSEµ,Metric TTFP TTI AATF PLT
µ(uPLT ) 2.48s 2.35s 1.99s 1.48s

wRMSE TTFP TTI AATF PLT
µ(uPLT ) 3.10s 2.45s 2.57s 2.64s
Mmajor 2.03s 1.84s 2.54s 3.27s
Mmiddle 4.89s 4.33s 4.23s 4.29s
Mminor 9.36s 8.69s 8.67s 7.96s
Mfirst 1.44s 1.81s 2.80s 3.79s
Msecond 4.60s 3.74s 3.72s 3.65s
Mthird 11.71s 10.89s 10.39s 9.14s

TABLE III: RMSE of (top) uni-modal and (bottom) multi-
modal uPLT with Web quality metrics.

10% of uni-modal pages had a |PLT − TTI| > 2.2s.
This finding suggests that the rendering of these webpages
naturally segment the users: some believe the page loaded
as soon as the major part of the page loaded (usually closer
to TTI) whereas others wait for all visible images to finish
loading to consider the page fully loaded (usually closer
to PLT).

C. Evaluation of Web Quality Metrics

Finally, we investigate to which extent single-valued ob-
jective Web quality metrics (see Sec. II) can approximate
the different modes of the uPLT distributions exhibited by
the webpages of our study. For each of the 56 webpages
showing a uni-modal uPLT behavior, Tab. III reports on the
top the Root Mean Square Error (RMSE) of the mean of
the uPLT distribution µ(uPLT ) with respect to each of the
following objective Web performance metrics: TTFP, TTI,
PLT and ATF, computed as Approximated Above-The-
Fold (AATF) [14]. Results reveal that PLT is the metric
which better approximates (lowest error term) the uPLT
for webpages showing a uni-modal behavior of uPLT.

We rely on the weighted RMSE (wRMSE) to assess
the quality of approximation of objective Web quality
metrics for the 52 webpages with multi-modal uPLT (see
the bottom part of Tab. III). This approach weights the
average towards larger components, which is particularly
important for better evaluating the error on Mmiddle and
Mminor. We conduct this analysis from three different
perspectives: (i) we compare the wRMSE of the mean of
the uPLT distribution µ(uPLT ), as we did for uni-modal
webpages, (ii) we examine the three modes sorted by their



TABLE IV: Summary of recent related work.

Year [ref] Experiments
scale

Measurement design uPLT multi-
modality

Metrics
evaluation

uPLT modes
analysis Main focus

2012 [24] n.a. uPLT crowdsourcing No Yes No WQL definition and
demonstration

2013 [32] n.a. uPLT crowdsourcing No Yes No Assessment and Models
for Web QoE

2014 [26] n.a. n.a. No Yes No Web QoE overview

2016 [10] 1000 users,
100 webpages uPLT crowdsourcing Yes No No uPLT metric definition

2017 [9] 50 users,
45 webpages uPLT crowdsourcing Yes No No uPLT optimization by

tracking user’s eye gaze

2017 [15] 5.4k users,
115 webpages A/B testing by show-

ing side-by-side videos
No Yes No Web browsing QoE as-

sessment

2020 [This work] 1k users,
108 webpages uPLT crowdsourcing Yes Yes Yes uPLT multi-modality anal-

ysis and characterization

mass Mmass = [Mmajor, Mmiddle, Mminor] (Mmajor is
the mode with the largest mass of the distribution), and
(iii) by occurring time Mtime = [Mfirst, Msecond, Mthird]
(Mfirst is the earliest).

The results summarized in Tab. III show that TTFP and
TTI better approximate Mmajor and, not unexpectedly,
given the duality shown in Sec. IV-A, Mfirst. On the
other hand, AATF and PLT better approximate Mmiddle,
Mminor, Msecond and Mthird. The former suggests that,
to enhance the uPLT analysis, measuring and optimizing
the last updates, usually achieved with PLT, is less relevant
with respect to the earlier ones, e.g., TTI and TTFP. The
latter instead confirms that the users choosing a late uPLT
agree on a page to be loaded close to the last two page
tracking events. It is also an interesting validation to note
that, on uni-modal pages, PLT better matches µ(uPLT )
whereas TTI does that for multi-modal ones.

V. DISCUSSION

Only few among recent works highlighted the existence
of possible multi-modal behaviors for the uPLT. However,
none of them deepened the study of the uPLT multi-
modality or further explored the existence of these under-
lying different user behaviors, by carrying out the analysis
of user feedback under this angle.

A summary of closely related work is reported in
Tab. IV, where we distinguish for each study whether its
authors identify or mention the multi-modal trait of uPLT
(“uPLT multi-modality”) or if they analyze that the uPLT is
insufficiently captured by single-valued objective metrics
(“Metrics evaluation”). For the sake of comparison with
our work, we report when available, the experimental
settings and the size of the measurements (amount of
users and webpages involved). Specifically, we note that
previous studies [24], [32], [26] observe that uPLT does
not match PLT, while Gao et al. [15] find that, more
generally, “commonly used navigation metrics such as
onLoad and TTFB fail to represent majority human percep-
tion”. We note that although these works remarked either
the multi-modality of uPLT or the difficulty in mapping
uPLT to single Web QoE metrics, their focus was not on
characterizing the uPLT multi-modal nature. This confirms

that the main hypothesis of our work is in line with the
recent empirical observations in Web QoE modeling.

In this paper, we go beyond related work by (i) evaluat-
ing the fraction of uni-modal versus multi-modal pages
according to a rigorous statistical test, (ii) thoroughly
characterizing the different uPLT modes, and finally (iii)
mapping between the different uPLT modes and the Web
QoE metrics proposed in the literature. Specifically, our
analysis shows that (i) the uPLT distribution is uni-modal
for approximately half of the webpages in our dataset, for
which a simple PLT indicator (measured via the browser
onLoad event) is a good estimator of user perception.
We also show that, among classical indicators of webpage
complexity, the number of objects and the number of
images are good indicators for uPLT modality. We then
show that (ii) multi-modal webpages are, in practice,
never characterized by more than three modes. The most
prevalent mode represents no less than 40% of users (69%
on average, 72% median) in our dataset. We also observe
that the earliest and most popular modes tend to match.

Finally, we demonstrate that (iii) we can approximate
the earliest and most popular mode by TTFP and TTI,
whereas metrics such as ATF and PLT better approximate
the other modes. These findings can be summarized in
the following rule of thumb for measuring Web QoE
using existing metrics. On the one hand, given that user
browsing statistics are likely to exhibit multi-modality, one
metric is generally not sufficient to faithfully capture user
perception. On the other hand, the whole spectrum of user
perception seems to be captured by relatively few user
modes, so that a small number of metrics are good at cap-
turing uni-modal (e.g., where PLT or AATF will suffice)
as well as multi-modal behavior (e.g., where additionally
TTI should be measured for increased representativeness).

VI. CONCLUSIONS

In this paper, we have asked a very simple but yet
important and challenging question: to which extent users
agree on a single time for when a page is loaded? This
question is important because, traditionally, Web quality
metrics (e.g., PLT and SpeedIndex) are conceived to pro-
duce a unique time indicator, implicitly assuming that user



opinions would statistically converge to a single value.
This question is also challenging, because of the sheer
size of the Web coupled with the complexity to collect
and understand user opinions. We show that for around
half of the webpages considered, the uPLT distribution is
multi-modal and that instead, for simple webpages users
more likely agree on a single uPLT. We point out our
results are representative (as per the stratified sampling
selection, which is interesting per se, that ensures our 100
target pages cover the initial 1M set) and repeatable (for
which we have already open sourced our dataset [11]).

Whereas this paper is far from entirely closing the
Web QoE measurement issue, we hope that open sourcing
our dataset [11] can help the community into further
nailing down the smallest set of relevant Web QoE metrics
covering all user modes, as opposite to attempting to
define yet another single Web QoE indicator, that would
by definition fail in this task.
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