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A deeper look at IP-ID behavior in the Wild
Dario Rossi, Flavia Salutari

Abstract—Originally used to assist network-layer fragmen-
tation and reassembly, the IP identification field (IP-ID) has
been used and abused for a range of tasks, from counting
hosts behind NAT, to detect router aliases and, lately, to assist
detection of censorship in the Internet at large. These inferences
have been possible since, in the past, the IP-ID was mostly
implemented as a simple packet counter: however, this behavior
has been discouraged for security reasons and other policies, the
use of random values, have been suggested. In this study, we
propose a framework to classify the different IP-ID behaviors
using active probing from a single host. Despite being only
minimally intrusive, our technique is significantly accurate (99%
true positive classification) robust against packet losses (up to
20%) and lightweight (few packets suffices to discriminate all
IP-ID behaviors). We then apply our technique to an Internet-
wide census, where we actively probe one alive target per each
routable /24 subnet: we find that the majority of hosts adopts a
constant IP-IDs (39%) or local counter (34%), that the fraction
of global counters (18%) significantly diminished, that a non
marginal number of hosts have an odd behavior (7%) and that
random IP-IDs are still an exception (2%). We believe that these
findings, together with the datasets we release, can provide some
support for works relying on a specific implementation of the IP-
ID and, more generally, they can be instrumental for researchers
operating in the field of network measurements, by providing
them an updated picture of the Internet-wide adoption of the
different known IP-ID implementations.

Index Terms—IP-ID, IPv4, Supervised Classification.

I. INTRODUCTION

The IP identification (IP-ID) is a 16 (32) bits field in the
IPv4 (v6) header [25]. Originally, along with the fragment
offset, the IP-ID was used to assist packet segmentation and
reassembly and it was unique per each combination of source,
destination and protocol. Yet, with technology evolution and
the adoption of the MTU path discovery [22], IP fragmentation
becomes less common nowadays, so that the last normative
reference [30] allows IP-ID of atomic datagrams to be be non-
unique. As a consequence, IP-ID fields values are determined
by the specific implementation of the Operating System [23].
In particular, the majority of research work focus their atten-
tion on the global counter implementation, which used to be
the most common implementation about a decade ago [31].
However, due to recent evolution of the standards [11], [30],
a wider range of behaviors can be expected nowadays. Over
time, different behaviors have been observed such as global
and per-flow counters, pseudo-random sequences and constant
values [2], as well as odd behaviors such as those due to
load balancing [6] middleboxes, or host implementations using
the wrong endianness [23]. Given that some of the above
implementations maintain state at the IP level, the IP-ID field
has been of invaluable help to infer a wealth of information
concering the network. Particularly, by leveraging inference

from global IP-ID implementation, researchers have been able
to count the numer of hosts behind NATs [2], [23], or even
assess the traffic they generate [6], [15] and finally expose
censorship in the Internet [4], [20], [23], [24].

Given this context, and in particular the emergence of new
IP-ID behaviors, it is important to define methods to classify
them, as well as using these methods to quantify the prevalence
of IP-ID implementation in the current Internet. To summarize
our main contributions:
• we design and implement a lightweight methodology to

classify the full range of IP-ID behaviors, based on a
handful of ICMP packets;

• we carefully validate our method against two datasets
comprising the replies from about 1,855 sample hosts,
chosen in different manners, for which we build a ground-
truth by manual inspection and against multiple synthetic
datasets, tailor-made to test robustness against various
forms of shortfalls;

• we apply the methodology to an Internet-wide campaign,
where we classify one alive target per each routable
/24 subnet, gathering a full blown picture of the IP-ID
adoption in the wild.

Specifically, whereas the global counter (18% of occur-
rencies in our measurement) implementation was the most
common a decade ago [31], we find that other behaviors
(constant 34% and local counter 39%) are now prevalent.
We also find that security recommendations expressed in
2011 [11] are rarely followed (random, 2%). Finally, our cen-
sus quantifies a non marginal number of hosts (7%) showing
evidence of a range of behaviors, that can be traced to poor or
non-standard implementations (e,.g., bogus endianness; non-
standard increments) or network-level techniques (e.g., load
balancing, or exogenous traffic intermingled to our probes
confusing the classifier). To make our findings useful to a
larger extent, we make all our dataset and results available
at [26].

The paper is structured as follows: Sec. II discusses the
related work. Sec. III describes the methodology and illustrates
the workflow and the datasets involved. In Sec. IV we show
the performance of the supervised classification approach
chosen in the following order: system validation, robustness
assessment and probing overhead analysis. Sec. V presents the
results of the classifier when operated in the wild and put in
perspective the findings obtained with those of the previous
works. Finally, Sec. VI summarizes the main outcomes and
concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Normative reference
The IP identification (IP-ID) field identifies the unique

fragments of a packet and it is used to handle the re-assembling
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TABLE I
SUMMARY OF RELATED WORK

Work Year Features Census Classes Breakdown
(%)

Methodology Scope of the work

[21] 2003 ∆IP-ID no (only 5000
target routers)

70% global,
remaining 30%
between constant
(equal to 0) and
counters with
increment by 2.

Analysis of replies to ac-
tive probing (ICMP re-
quests)

Packet reordering and losses diag-
nosis.

[6] 2005 ∆ IP-ID no (50 target
web-servers)

38% global Analysis of replies to ac-
tive probing (HTTP re-
quests)

Discover the amount of load bal-
anced servers, measure the traffic
generated by a server.

[14] 2013 - no 57% global, 14%
local, 9% constant,
20% mixed IP-ID,
1% random/other (1)

- Off-path DNS cache poisoning at-
tacks and defense against them
through DNSSEC validation.

[24] 2017 IP-ID ac-
celeration

no 16% global TCP SYN-ACK from
multiple vantage points

Reveal Internet censorship.

process. First documented in the early 80s by RFC791 [25] its
use has been updated in several RFCs [5], [9], [11], [12], [30],
[31]. Whereas [25] does not fully specify the IP-ID behavior
(i.e., it only states that each packet must have a unique IP-ID
for the triplet of source, destination and protocol), different
behaviors (namely Global, Local and Random, illustrated
in Fig.1) are detailed in 2006 by RFC4413 [31]. In 2008,
RFC5225 [9] observed that some hosts set the IP-ID to zero: at
the time of [9], this was a not legal implementation as the field
was supposed to be unique. Yet, in 2012 [23] observed that the
actual IP-ID implementation depends on the specific Operating
System (OS) and versions2. In 2013, RFC6864 [30] updated
the specifications by affirming that the IPv4 ID uniqueness
applies to only non-atomic datagrams: in other words, if the
don’t fragment (DF) bit is set, fragmentation and reassembly
are not necessary and hence devices may set the IP-ID to zero.
At the same time, concern has been raised about security prob-
lems following the predictability of IP-ID sequences [10], [12],
[14], [18]. In particular, in 2012 RFC6274 [11] discouraged
the use of a global counter implementation for many security
issues, such as stealth port scan to a third (victim) host, and
in 2016 RFC7739 [12] addressed concerns concerning IPv6-
specific implementations. In light of the recent evolution of
the standards, a re-assessment of IP-ID usage in the wild is
thus highly relevant.

B. IP-ID Classification Breakdown

In the last decade, to the best of our knowledge, few research
works have provided a complete picture of the breakdown
of the existing IP-IDs behaviors. That is what makes the
comparison of the results of this work with the previous ones
with the purpose of analysing the temporal changes on the
IP-ID popularity an hard task.

Specifically, the sole quantitative assessment of IP-ID be-
havior over multiple classes dates back to 2013. This is

2In particular [23] reports Windows and FreeBSD to use a global counter,
Linux and MacOS to use local counters and OpenBSD to use pseudo-random
IP-IDs.

limited to 271 Top Level Domains TLDs probed by [14]
(whose main aim is to propose practical poisoning and name-
server blocking attacks on standard DNS resolvers, by off-
path, spoofing adversaries). In particular, the 2013 study finds
57% global, 14% local, 9% constant, 1% random/other .
Additionally, [14] suggests that 20% of DNS TLD exhibit
evidence of “two or more sequential sequences mixed up,
probably due to multiple machines behind load balancer”.

The remaining works concentrate instead on assessing the
popularity of just the global implementation being it only the
focus of their studies, proving once again the relevance of
a Internet-wide list comprising IP addresses generating IP-
ID with the aforementioned behavior. Namely, in 2003, [21]
reported that 70% (over 5000 probed targets) were using an
IP-ID counter (global or local implementation); in 2005, [6]
reported that 38% (over 150 hosts) used a global IP-ID; in
2006, [31] affirms the global implementation to be the most
common assignment policy (among 3 behaviors).

C. IP-ID Based-Inference

Additionally, the IP-ID has been exploited for numerous
purposes in the literature. Notably, IP-ID side-channel
information helped to discover load balancing server [6],
count hosts behind NAT [2], [23], measure the traffic [6],
[15] and detect router alias [3], [17], [29]. More recently, [20]
leverages IP-ID to detect router aliases, or infer router up time
[4] and to reveal Internet censorship [24], refueling interest
in the study of IP-ID behavior. Whereas the above work [2],
[6], [15], [24], [29] mostly focus only on the global IP-ID
behavior, in this work we not only consider all expected IP-ID
behavior, but additionally quantify non-standard behaviors:
in particular, we provide a methodology to accurately classify
IP-ID behaviors, that we apply to the Internet at large,
gathering a picture of the relative popularity of each IP-ID
behavior. In terms of methodologies, authors in [21] use
ICMP timestamp and IP-ID to diagnose paths from the source
to arbitrary destinations and find reordering, loss, and queuing
delay. In [16], the authors identify out-of-sequence packets in
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Fig. 1. Illustration of Constant, Local, Global, Random and Odd sequences

TCP connections that can be the result of different network
events such as packet loss, reordering or duplication. In [6],
they use HTTP requests from two different machines toward
150 target websites, to discover the number of load-balancing
server. Authors in [24] use TCP SYN-ACK from multiple
vantage points to identify connectivity disruptions by means
of IP-ID fields, which then they use as a building block of a
censorship detection framework.

Building on our own previous work [27], we leverage
ICMP traffic (spoofing IP addresses to craft sequences of
packets that are precisely interleaved when they hit the target
under observation) to build an accurate, robust and lightweight
IP-ID classification technique. In particular, this work extends
[27] by providing more details on the experiments run and
on the methodology, additional results, such as the sensitivity
analysis and the spatial analysis.

III. METHODOLOGY

To provide an accurate and comprehensive account of IP-
ID behavior in the wild, we need (i) a reliable classifier, able
to discriminate among the different typical and anomalous IP-
ID behaviors. At the same time, to enable Internet coverage,
(ii) the classifier should rely on features with high discrim-
inative power, extracted from the data gathered through an
active probing technique that is as lightweight as possible.
In this section we illustrate the practical building blocks and
their theoretical foundations, that our classification framework
builds upon.

A. IP-ID classes

From the host perspective, several IP-ID behaviors are
possible as depicted in Fig.1. The image shows the sequences
of 25 IP-ID samples sent from 2 different host (orange and
blue) where the packets are sent alternatively to the target.
The different behaviors depicted are, from left to right: (i)
constant counters are never incremented (and for the most
part are equal to 0x0000); (ii) local or per-host counters

that are incremented at each new packet arrival for that
flow (mostly by 1 unit, 99.7% of the times in our large
scale measurements): as a consequence, while the orange or
blue per-host sub-sequences are monotonically increasing, the
aggregate sequence alternates between the two; (iii) global
counters are incremented by 1 unit at each new packet arrival
for any flow: thus, the sequence s is monotonically increasing
(90.3% of the times by 1 unit, 4.7% by 2 units and 4.6% by
3 units), and the orange or blue per-host sub-sequences are
monotonically increasing but at a faster rate (by 2 units); (iv)
random IP-IDs are extracted according to a pseudo-random
number generator. Finally, a special mention is worth for the
class of (v, vi) odd IP-ID behaviors, that are not systematically
documented in the literature and that arise for several reasons
(including bugs, misconfiguration, non-standard increments,
unforeseen interaction with other network apparatuses, etc.)
and for which we report two different samples occurring in
real experiments.

B. Active probing

To gather the above described sequences, our measurement
technique relies on active probing. We craft a tool able to send
and receive ICMP packets, running at two vantage points (VP)
with public IP addresses in our campus network. Specifically,
we send a stream of N ICMP echo requests packets in a back-
to-back fashion, which forces the target machine to generate
consecutive ICMP echo replies: thus, assuming for the time
being that no packet were lost, we gather a stream of N IP-
IDs samples for that target. Sending packets back-to-back is
necessary to reduce the noise in the IP-IDs stream sequence:
if probe packets were spaced over time, the sequence could
be altered by exogenous traffic hitting the target (e.g., in case
of global counter). As a result, the sequence would depend on
the (unknown) packet arrival rate in between two consecutive
probe packets, likely confusing the classifier [28]. In this way,
the use of back-to-back packets reduces as much as possible
the interference with some possible extra exogenous traffic
hitting the same destination, that could otherwise alter the
sequences [28]. A second observation is that, whereas a single
vantage point may be sufficient to distinguish among constant,
random and global counters, it would fail to discriminate
between global vs local counters. However, sending packets
from two different VPs is not advisable, due to the difficulty
in precisely synchronizing the sending patterns so that packets
from different hosts alternate in the sequence [21].

Therefore, a better alternative is to receive packets on two
different VPs, x and y, but shift the packet generation process
to only one of them, as x, and use it as sender: by letting x
spoof the address IPy of the colluding receiver y, it is possible
to generate a sequence of back-to-back packets that are also
perfectly interleaved as depicted in Fig.1. Fig.2 shows the
scenario in which the experiments are carried out. It provides
information about how the hosts are involved and the kind of
data collected: there are two receivers but only one real sender,
and the information gathered at the two vantage points regards
the sequences of IP-IDs generated by the target machine. To
validate our assumptions, we carry on additional experiments
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Fig. 2. Scenario in which the active probing is performed: only one sender
is used to ease the synchronization of packets generation, whilst both the
machines are used to receive and collect the stream of IP-IDs generated at
the target machine.

on a preliminary testbed to test the sensitivity of the algorithm
to external traffic hitting the target. In these experiments:

• we send UDP CBR traffic with Iperf at TXrate =
10Mbps and vary the packet size over time (in particular
decrease), so that we increase the packet rate during the
experiment (to control the IP-ID generation);

• in one experiment, we send ICMP Echo Request packets
with an inter-packet gap of ∆tinterpacketgap = 10ms and
collect the IP-ID sequence x, for which we derive the
derivative series (gray color line);

• in the other experiment, we send ICMP packets back-
to-back and again measure the growth of IP-ID in the
sequence (red color line).

Even though the experiments are simple, the results are very
telling: the plots in Fig. 3 show the derivative of the sequence
of IP-IDs x′, which basically just counts the amount of
exogenous packets in between two consecutive ICMP probes,
in both scenarios of the experiments. For instance, when
packets are 100 Bytes long, in ∆tinterpacketgap = 10ms

it is expected to have TXrate·∆tinterpacketgap

packetsize = 125 packets
slipping in between two probes, which actually happens. This
would clearly jeopardize the classifier. Conversely, in the
experiments carried out in our lab, back-to-back packets leave
no possibility to the other UDP packets to intermingle and
confuse the classifier. These experiments suggest that sending
packets back-to-back is a good strategy, although we do not
feel results to be conclusive for all the devices available in
the network (e.g. router, setup, shaper, etc.). However, even
in case the reality was not as nice as our lab results (which
is likely to be the case), at the same time this affects at most
some of the odd behaviors, which already are a tiny (7%)
fraction of the overall cases. Indeed, it is very unlikely that
the amount of real traffic is so perfectly varying between
probes to erroneously confuse a classifier to believe that a
global sequence is a random one just due to exogenous traffic.
Very high information entropy of those sequences is not a
side-product of some variable traffic, but truly coming from a
random number generator (it is pretty well known that is hard
to generate good pseudo-random sequences, and the arrival
rate is surely not a source of perfect entropy).

To overcome reordering, packet loss and duplication events,
we additionally control the sequence number in the stream of
generated probe packets.

Packet size [Bytes]

 1400    1200    1000    500      250    100

Fig. 3. Sensitivity analysis to external traffic: derivative of the sequence of
IP-IDs x′ in the two different scenarios

TABLE II
TABULATED EXPECTED VALUES FOR SELECTED FEATURES

Feature Constant Local Global Random Odd

H(x) 0 log2
N
2 log2

N
2 ≤ log2

N
2 -

H(s) 0 ≤ log2N log2N ≤ log2N -
H(x′) 0 0 0 ≤ log2

N
2 -

H(s′) 0 1 0 ≤ log2N -

E[x′] 0 1 2 (216−1)
2 -

σx 0
√

(N2−4)
48

√
(N2−4)

12
(216−1)√

12
-

σs 0 ≤ (216−1)√
12

√
(N2−1)

12
(216−1)

2 -

σ′x 0 0 0 (216−1)√
12

-

σ′s 0 |x1−y1− 1
2 | 0 (216−1)√

12
-

C. Features Definition

As anticipated, to build a robust classifier we need to man-
ually define a set of tailor-made features able to discriminate
among the different IP-IDs implementations. The experiment
and the measurements can be formalised as follows: we send
N packets to a given target t, with the source address field
alternating between consecutive requests, whose replies are
sent back to our two vantage points x and y: we indicate
with s the aggregated sequence comprising the N IP-IDs sent
back by t, as we receive it at the edge of our network3.
By abuse of language, we indicate with x and y the sub-
sequences (each of length N/2) of IP-IDs, sent back by t and
received by the homonyms host. From these sequences x, y
and s we further construct derivative series x′, y′ and s′ by
computing the discrete differences between consecutive IP-IDs
(i.e., x′i = xi − xi−1). We summarize these series with few
scalar features by computing the first

E[X] =
1

N
·
N∑
i

xi (1)

2Due to the rounding done by the authors [14], the sum of all the
percentages is 101%

3Notice that packet losses and reordering may let us receive less than N
packets, or receive packets in a slight different order than what sent by the
target.
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and second moments

σ =
√
E[X2]− (E[X])2 (2)

of the IP-ID series, as well as their information entropy,

H(X) = E
[
I(X)

]
= −

N∑
i

pi log2 pi (3)

which is defined as the expected value of the information

content I(X) = log2

1

pi
, where pi is the provability that the

discrete random variable X takes the xi value.
Specifically, we consider the mean E[X] of the derivative

series x′ and y′, the entropy H(X) and the standard deviation
σ of s,x and y and of their derivatives s′, x′ and y′ . Actually,
for each feature we can derive an expected value in the ideal4

case (so that no expected values is reported for the odd class)
that we summarize in Tab.II. For the sake of brevity, we
report in Tab.II only once the expectations of the features of
the subsequences x and y, given that they are conceptually
equivalent. Intuitively, we expect the mean of the constant
sequence to be unknown, but that of its derivative to be null.
Similarly, the derivative of a global counter would have a value
of 1 (2) for the aggregate sequence s (subsequences x and y).
The entropy of the sequence is expected to increase from the
minimum of a constant sequence equal to

H(X) = −1 log2(1) = 0 (4)

to the maximum of

H(X) = −N · 1

N
log2

1

N
= log2N (5)

occurring when all the N elements of the series are dif-
ferent. Consequently, by considering the global and local
implementations, we can observe that the entropy for the
sequences x and y of length N

2 is expected to be maximum
H(xglobal) = H(yglobal) = log2

N
2 . Consequently, in the

global implementation, the sequence s is made up of two
not-overlapping sequences, leading to an expected maximum
entropy of H(sglobal) = log2N . Differently, in the local
implementation this is true only when the two counters do not
overlap, otherwise this value remains only an upper bound. A
similar observation can be done for the entropy expectations
for the random sequences, in which the presence of duplicate
values would reduce the entropy. For the local implementation,
the sequences x′, y′, derivatives of two independent counters,
are constant thus the entropy, as said, is expected to be 0. On
the other hand, the derivative s′ of the aggregate sequence s is
made up of two alternating values, corresponding to the two
offsets:

s′local(n) =

{
θ1 = y1 − x0 if n even
θ2 = x2 − y1 if n odd

(6)

4Sequences from well behaving hosts that have no software bug or
malicious behavior, and that are neither affected by losses nor reordering

89% of targets receive

more than 80 probes 

78.4% of targets

receive all the probes 

Fig. 4. Internet campaign: ECDF of the number of packet replies

Both θ1 and θ2 are repeated for
N

2
times, so each one occurs

with a probability of
1

2
. The entropy becomes:

H(s′local) = −2 · 1

2
log2

1

2
= log2 2 = 1 (7)

Conversely, being the expected derivative sequence of a global
counter always equal to s′global = 1, as a result the entropy
becomes H(s′global) = 0.

In a similar way, the other expectation values can be easily
derived by analogy.

D. Datasets

In this work, we collect four different datasets, that we
use in the different stages of the work alternatively to make
the classifier learn the classification function, i.e. as training
dataset, and to evaluate performances as testing dataset.

1) Large scale census L: The first dataset is made up of
real measurements coming from the large scale measurement
campaign and includes the replies coming from a subset of
a hitlist of alive IP addresses. We avoid putting stress on
the infrastructure carrying a full Internet census: as we aim
at providing an accurate picture of the relative popularity of
IP-ID implementations on the Internet, it suffices to collect
measurements for a large number of targets, namely 1 alive
IP/32 host per each /24 prefix. For this reason, for the targets
selection, we rely on the public available hitlist regularly
published by [13], comprising 16 millions of targets IP/32. The
hitlist contains targets for all /24, including those who have
never been replying to the probing: excluding them from our
target list, leaves us with approximately 6 millions of potential
targets. To reduce the amount of probe traffic, we decide to
be conservative: we preliminary probe the 6 millions potential
targets sending two ICMP echo requests, and include in our
final target list the approximately 3,2 million responsive hosts
(in line with [8], [32]). We send a batch of N=100 back-to-
back probe packets to each target, but otherwise probe at a low
average rate, so that we complete a /24 census in about 3 days.
Fig.4 shows the empirical cumulative distribution function
(ECDF) of received packets at our VPs. We observe that we
receive almost all the replies from most of the targets: the 90%
(80%) of the targets answer to more than 40 (all) packets per
each host, corresponding to a 20% (0%) loss scenario. A large
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TABLE III
SUMMARY OF THE DATASETS.

Name Type Description Properties Size
[Targets]

URL

L Real
Measurements

Large scale measurements dataset comprising the IP-ID se-
quences received from the portion of hitlist [13] providing
response rate ≥ 80%

Presence of presence of odd be-
haviors of the IP-ID, possibility of
losses or out-of-order packets

2,5 M [26]

G Real
Measurements

Manually labeled dataset containing the IP-IDs contained in
the replies of a set of IP addresses sampled uniformly from
the hitlist to guarantee class balance

Targets chosen to provide IP-prefix
level and class balance, presence
of odd behaviors, used for training
and classification of L

2 k [26]

G′ Real
Measurements

Manually labeled dataset containing the IP-IDs from the
replies of a set of IP addresses where 75% of it belong to
the same IP/8 subnet

Targets chosen to provide IP-prefix
level imbalance, presence of odd
behaviors, used for validation of
performances

2 k [26]

Sideal Synthetic Dataset manually designed to intentionally contain the four
possible IP-ID implementations in the ideal case evenly
distributed emulating the replies collected through real mea-
surements

Lossless, absence of odd behaviors,
used for validation of performances

20 k [26]

Slossy Lossy
Synthetic

Dataset manually designed to intentionally contain
the four possible IP-ID implementations spoiled
with four different flavour of losses (Slossy =
∪(Sunif.,Shole,Sextr.,Sequi.)) evenly distributed

Lossy, absence of odd behaviors,
used for testing resilience to losses

20 k [26]

Sreorder Synthetic G dataset spoiled when of 20% of each IP-ID sequence is
intentionally randomly swapped

Used for testing resilience to se-
quence alteration due to out-of-
order packets

20 k [26]

Constant Local Global Random Oddities
0.0

0.1

0.2

0.3

0.4

N
or

m
al

iz
ed

O
cc

ur
re

nc
es

G
G ′

Fig. 5. Manual Ground Truth: Normalized classes occurrences for the training
datasets G and G′

plateau in the CDF also indicates that the distribution is bi-
modal, i.e., the remaining hosts generally reply with very few
packets (e.g., 10 or less per each VP or over 90% loss rate).
This suggests that future campaigns could be safely conducted
with a smaller N ′ < N . To provide accurate classification
results, in light of our robustness analysis done with synthetic
dataset and whose results are shown in Sec.IV-B, we limit our
attention to the 2,588,148 hosts for which we have received
at least N = 80 packets.

2) Ground Truth G and G′: The second real dataset is G,
made of IP-ID sequences for which we manually construct
a ground truth. For this purpose, we extract the replies from
a subset of targets of L which satisfy some pre-established
requirements. We include in this dataset only the 1,855 hosts
from which we receive 100% of the replies, and perform the
manual inspection of each of the sequences. We repeat the

process twice, with two very different choices of the ground-
truth datasets: G sampled uniformly from the hitlist paying
attention to guarantee class balance and G′ where about 75%
samples belong to the same IP/8 subnet. Interestingly, when
performing the manual labelling, we find a small but non
marginal fraction (about 7%) of sequences that are hard to
classify: a deeper investigation reveals these odd behaviors to
be due to a variety of reasons – including per-packet IP-level
load balancing, wrong endianness, non standard increments in
the global counter, etc. While we cannot completely rule out
interference of exogenous traffic altering our IP-ID sequences,
lab experiments suggest that the use of back-to-back packets
lessen its impact, as described before in Sec.III-B. Neverthe-
less, these samples provide a useful description of the odd
class, that would otherwise have been difficult to define. In
Fig. 5 we report the breakdowns of the two datasets G and G′.

3) Syntethic Datasets: In order to assess the robustness
of our classifier against packet losses, we rely on two more
datasets which are made up by synthetic sequences, from
which we can derive the features useful in the classification
process. While for simple loss patterns (e.g., uniform i.i.d.
losses) it is still possible to analytically derive expected values
in closed form, for loss models where losses are correlated,
this becomes significantly more difficult. As such, we opt
for an experimental assessment of classification accuracy in
presence of different synthetic loss models, that we apply
to synthetic ideal sequences contained in dataset Sideal by
purposely discarding a part of the sequences. Specifically, we
consider: (i) a uniform i.i.d. loss model; (ii) a hole model
where, starting from a random point in the sequence, 20%
of consecutive samples are removed; (iii) an extreme model
where we remove 20% of the initial values (or equivalently
the final 20% of the sequence); and finally (iv) an equidistant
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Fig. 6. Validation: Confusion Matrix of 20-fold validation over G done both
with Decision Tree and Random Forest Classifiers

model where losses start at a random point and are equally
spaced over the sequence. We apply these loss models to
obtain a synthetic lossy dataset Slossy. Specifically, for each
loss model we generate 5,000 loss sequence pattern, for an
overall of 20,000 test cases. In order to deeper investigate
the reordering phenomena effect on the performances of the
classifier, we manually disrupt the sequences contained in G.
Specifically, we impose the swapping of 20% on the IP-IDs
contained in the series x, y collected for each IP address in G
and build a new rigged dataset Sreorder.
A summary of all the datasets with their description and
properties is shown in Tab.III.

IV. IP-ID CLASSIFICATION

From the values tabulated in Tab.II, we expect classifiers
that use this set of features to be able to fully discriminate the
set of IP-ID well-defined behaviors under ideal conditions.
However, as we shall see, unexpected behavior may arise in
the Internet, due to a variety of reasons, which are hard to
capture in general. We thus opt for a supervised classification
approach, which allows to learn a predictive model with
decision trees (DTs), based on the above features. Specifi-
cally, we resort to the Classification And Regression Trees
(CART) [19], that builds trees having the largest information
gain at each node. DTs are part of the supervised machine
learning algorithms, and infer a classification function from a
labeled training dataset, that we have manually built and that
is useful for training and validation purposes. Additionally,
we investigate to what extent the classifier is robust against
losses and reordering, and finally assess the minimum number
of samples N needed to achieve a reliable classification.

A. Classification accuracy and validation

We first train and validate our classifier using the the real
dataset G of IP-ID sequences for which we have manually
constructed a ground truth. Note that, for the moment we train
the classifier only over the dataset G, but later we will show
the independence of the model from this choice.

We assess the classification accuracy over G with a 20-
fold cross-validation, whose results are reported in Fig. 6
as a confusion matrix: we can observe that the classifier is
extremely accurate, with 100% true positive in the constant
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Fig. 7. Validation: Relative importance for the most useful features of the
classifier.

and local classes, 99% for the random and 98% for the
global class. The worst case is represented by 95% true
positive for the odd class (that represent only 7% of the
samples): these very few misclassifications are erroneously
attributed to local, global or random classes, and additional
series definition (e.g., to compensate for wrong endianness)
could help reducing if needed. For completeness, in order to
compare the classification methodology used with another one,
we compare the results obtained with the CART Decision
Tree algorithm with the ones done with the Random Forest
Classification. Results, shown in Fig. 6, again as a confusion
matrix, show that the small misclassification gaps introduced
by the Decision Tree are fully filled when using a Random
Forest Classifier, which leads to 100% classification accuracy
for all the classes.

Additionally, Fig. 7 depicts the importance for the most
useful features of the classifier. Four main takeaways can be
gathered from the picture: first, just four features are necessary
for a full discrimination, which is reasonable as the cardinality
of the classes to discriminate is small; second, as expected
features that measure the dispersion (entropy and standard
deviation) are prevalent; third, both original and derivative
sequences are useful in the detection; fourth, subsequence
metrics are highly redundant (i.e., H(x) = H(y), σx = σy ,
etc.).

B. Robustness

It is fundamental to test the robustness of the features to
losses in a controlled scenario, in order to emulate the real
measurements, in which events such as packet losses or out-
of-order arrivals are not so rare. For the previously shown six
features we evaluate their values in the lossy synthetic Slossy
sequences and tabulate the results averaged over the dataset,
respecting the IP-ID and loss type partitioning, in order to
compare with the ones of evaluated for the lossless sequences
in Sideal. In Tab. IV we report those values evaluated for the
simulated local implementations. The columns represent the
different cases in which the features are evaluated, lossless
dataset Sideal, and lossy Slossy with uniform random, hole,
extremal and equidistant losses. As a whole, results obtained
with the synthetic dataset Slossy do not significantly diverge
from the ones deriving from Sideal proving the strength of
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TABLE IV
FEATURES VALUES FOR BOTH LOSSLESS AND LOSSY SYNTHETIC DATASET
Slossy WITH 20 % LOSSES - LOCAL IMPLEMENTATION CASE OF IP-ID.

Sideal Slossy
Feature Lossless Uniform Hole Extremal Equidistant

H(s) 6.64 6.64 6.64 6.64 6.64
H(x′) 0 0.84 0.17 0 0.78
E[y′] 1 1.25 1.25 1 1.26
σ(x) 32.64 38.75 29.68 18.02 20.92
σ(s) 10.97e3 11.09e3 1072e3 11.03e3 11.05e3

σ(s′) 16.29e3 16.01e3 16.6e3 16.15e3 16.4e3
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Fig. 8. Robustness: (left) Confusion Matrix of a classifier trained over the
real lossless dataset G and tested over synthetic lossy dataset Slossy with
purposefully injected 20% packet losses on each sequence, (right) Confusion
Matrix of a classifier trained over the real lossless dataset G and tested over
the dataset where 20% of each sequence is intentionally randomly swapped
Sreorder .

the features and their robustness to change and alteration of
the original sequences. Specifically, H(s), which turns out to
be the most important feature, as shown in Fig. 7, does not
vary in presence of any kind of losses, H(x′) can vary more
depending on the flavour of the loss.

Given this results, we next assess the robustness of the
classifier against packet losses, which may introduce distortion
in the features. Since, as previously described, the expected
values in the ideal conditions are significantly apart, we expect
the classifier to be resilient to a high degree of losses. Without
loss of generality, we consider an extreme case where only 80
out of 100 samples are correctly received (i.e., a 20% loss
rate) by exploiting the lossy synthetic dataset Slossy.

We want to assess the accuracy of the previously validated
model, i.e., the one trained on the real lossless dataset G over
Slossy. Results of these experiments are reported in Fig.8 and
Fig.9. In particular, the confusion matrix reported in the left
side of Fig.8 shows the aggregated results over all loss models:
we can observe that most of the classes have a true positive
classification of 99% or 100% even in presence of 20% packet
losses, and irrespectively of the actual loss pattern.

Additionally, we observe that in the case of the local class,
only 86% of the sequences are correctly classified, whereas
14% of the local sequences in presence of heavy losses are
erroneously classified as being part of the “odd” behavior
class. Fig.9 dig further the reasons of this discrepancy, showing
that the misclassification mostly happens for the hole loss
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Fig. 9. Robustness: Misclassification breakdown of the (local,odd) (14%) for
the different loss models.

model, while in the other cases is a very rare event. Recalling
the odd behavior early shown in the plot of Fig. 1, we notice
that this model induces a gap in the sequence, which is
possibly large enough to be statistically similar to cases such as
load balancing, where the sequence alternates among multiple
counters. Overall, we find the classifier to be robust to very
high loss rates and, with a single exceptions, also invariant to
the actual loss pattern – which is a rather desirable property
to operate the classifier into a real Internet environment. To
investigate the effect of the presence of out-of-order packets
received at the vantage point and of the reordering phenomena,
we perform again the classification, with the decision tree
classifier still trained over G but tested over Sreorder. We
use again the confusion matrix as graphical way to highlight
the quality of the classification. Results of these experiments
are shown in the right matrix of Fig.8: we can observe that
reordering does not affect at all constant and random labels
classification and that the classifier is strong in recognizing
the local and global behaviors leading to respectively 1% and
2% false positive misclassification.

C. Probing Overhead

We finally assess how large the number of samples N
needs to be to have accurate classification results. In principle,
features tabulated in Fig.II are diverse enough so that we
expect high accuracy even for very small values of N .

To assess this experimentally, we take the real lossless
dataset G and only consider that we have at our disposal
only N ′ < N out of the N = 100 samples gathered in the
experiment. For each value of N ′, we perform a 20-fold cross
validation, training and validating with N ′ samples. We start
from a minimum of N ′ = 10 (i.e., 5 packets per host) up to
the maximum of N = 100 (i.e., 50 probes per host) samples.
Fig.11 clearly shows that accuracy is already very high5 at
0.95 when N ′ = 4 and exceeds 0.99 when N = 100.

5Notice that even in the extreme case with as few as N ′ = 2 packets, ran-
dom and constant classification are correctly labeled, whereas the remaining
global vs local cannot be discriminated, yielding to 0.70 accuracy in the G
set.



9

Constant Local Global RandomOddities0.0

0.2

0.4

0.6

N
or

m
al

iz
ed

O
cc

ur
re

nc
es L dataset (2,588,148 IPs)

G dataset (1,855 IPs)

2003 2005 2013 2017 This work

Global

Constant Local Global RandomOddities

G ′
G

Fig. 10. (a) Internet campaign: Normalized classes occurrences for the training G and Internet-scale L dataset; (b) Measured occurrences of Global IP-ID
implementations over the years; (c) Breakdown of the classes of L obtained with both G′ and G

2 4 6 8 10 20 30 50 100

Number of Replies

0.7

0.8

0.9

1

A
cc

ur
ac

y

Fig. 11. Probing Overhead analysis: Accuracy as a function of the sample
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V. INTERNET CAMPAIGN

The last step of the analysis consists in using the previously
trained classifier over G to classify the IP-ID behaviors present
in the dataset L. In this section, we firstly detail the way in
which we collect the data, then we show the results of the
classification and we compare them with ones done in the past.
Then, we deeper investigate some aspects to see how different
boundary conditions affect classification performances, as the
impact of different training set choices or of the number
of probe packets on the performances of the classification.
Finally, we perform a spatial analysis and we deepen the
analysis of odd behaviors.

A. Longitudinal Comparison (over the years)

Finally, we apply our classifier in the wild, specifically on
the already mentioned dataset L in Sec.III-D1, made with
the data collected through a large scale Internet measurement
campaign. We observe that, while our classifier is able to
perform a very accurate classification even with few sam-
ples, we need to deal with loss rates, which is unknown
a priori. Hence, even though our probing overhead analysis
in Sec. IV-C revealed high accuracy for few number of
samples, we prefer for the time being to use a simple and
conservative approach and select N = 100 samples, being very
accurate also in presence of very high loss rates. We apply the
classification to batches of 100,000 hosts, and for each class

c, compute the relative breakdown of the class in that batch
n̂c = nc/

∑
i ni, evaluating the confidence intervals of n̂c

over the different batches. Results are reported in Fig.10 (a),
where we additionally report the breakdown in our G training
set comprising just 1,855 population samples: it can be seen
that while G has no statistical relevance for the census, it is
not affected by class imbalance and thus proves to be a good
training set.

Results are particularly interesting to put in perspective with
current literature knowledge. Specifically, past work [6], [10],
[21], [31] consistently reported the global counter to be more
widespread: in 2003, [21] 70% ; in 2005, [6] 38%; in 2006,
[31] affirms the global implementation to be the most common
assignment policy; in 2013, [14] 57%. On the contrary,
we find that only 18% (over 2,5 million targets) are still
using global counter implementation: this in line with 2017
results that reports slightly more than 16% global IP-IDs [24]
(whose main aim is to detect censorship in the Internet). While
this decreasing trend, summarized in Fig.10 (b), is possibly
affected by the comparably smaller population size of early
studies, however we believe this trend to be rooted into OS-
level changes in IP-ID policy implementations: e.g., Linux and
Solaris, which previously adopted a global counter, for security
reasons later moved to a local counter implementation [11].

By comparing our results with the only one providing the
occurrences of both the normatives-compliant IP- ID behaviors
and some odd practices [14], the 2013 study (our census) finds
57% (18%) global, 14% (39%) local and 9% (34%) constant
IP-IDs, which testify of a significant evolution. Additionally,
recalling that [14] suggests that 20% of DNS TLD generate
mixedIP-IDs, we find out that this is much larger than the 7%
fraction of the larger “odd” class (including but not limited
to load balance) that we find in this work. Finally, despite
2012 recommendations [11], the percentage of random IP-ID
sequence was (and remains) limited 1% (2%).

For completeness and in light of what showed in Sec. IV-A,
we compare the results obtained with the CART Decision
Tree algorithm with the ones done with the Random Forest
Classification. From the outcomes reported in Fig.12 we can
observe that no statistical difference is present in the two cases.
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Fig. 12. Breakdown of the classes of L obtained with both a Decision Tree
and a Random Forest Classifier.

B. Sensitivity Analysis

1) Training Set Choice: In order to prove the indipendence
of the results from the choice of the training dataset we exploit
the second manually validated dataset G′, which satisfies the
previously described requirements and it is purposely biased,
as it contains 75% of the samples from the same /8, which is
something not desiderable from a IP coverage point of view.

We then use these two datasets to classify the IP-ID be-
haviours in the whole large scale dataset L covering the all
the responsive IP addresses of the full hitlist. Results, shown in
Fig. 10 (c) confirms indeed the validity of our methodology
since, statistically, there are only slight differences between
the occurrences breakdown when the classifier is trained over
G or G′ . Both datasets yield to consistent results ensuring
the independence of the model from the training dataset and
proving that as long as the behaviors are balanced the IP-prefix
level imbalance is irrelevant.

2) Lightweight Census: Additionally, we may want to fur-
ther investigate how the classification results change when we
have a fewer number of packets building the IP-ID series that
we aim at classify. This is important since we want to avoid
injecting useless traffic in the network and, if we find out that
we can lead experiments with less samples, we can achieve it.
Similarly to what previously described in Sec.IV-C, we take
the measurements dataset G and only consider that we have
at our disposal only the first N ′ = 10 < N out of the N =
100 samples gathered in the full experiment. Given that in this
case we are only looking at a small portion of the collected
series, we may expect that in this case we can have a loss in
terms of amount of oddities really present in the dataset, and
behaviors like the one depicted in Fig.1 might not be correctly
classified, simply due to to lack of information about it. In fact,
in this case, it is possible that the jump of the IP-ID counter
occurs later in the sequence, so all the features are evaluated
on a resembling simple counter. What practically happens in
reality confirms the expectations: about half of the oddities
are spread between the global and local implementations.
What is instead more surprising is the substantial decrease
for the population random class. This might be due again
to the lack of fundamental information to correctly classify
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Fig. 13. Normalized classes occurrences for L and its lighter version when
only N=10 packets out of 100 are considered.

those behaviors. Conversely, constant behaviors are easy to
be identified even with a bunch of few packets. These results
show that to correctly detect random and odd IP-ID classes
more care is needed: more data might be required to spot the
proper behavior of the series. Whilst, for the other classes, few
packets are more than enough to correctly classify them.

C. Odd behavior analysis

During the manual labelling phase we have discovered some
IP addresses setting IP-ID in unusual manners, which may
be ascribable to different reasons, and that we named with
the odd term. In this section we try to investigate a bit more
the odd class, making an effort to try to figure out which
are the odd behaviors and we try to understand whether we
can re-map some of those IP addresses in other classes or
not. The first analysis we perform consist in converting the
interpretation of the bytes contained in the IP-ID IPv4 header
field to little endian and try to perform again the classification
to check if something changes. We focus only on the 172,679
IP addresses in L previously classified as odd and perform
byte swapping to each IP-ID value of the x, y series. Then,
we re-build the dataset with the new features and operate the
classifier trained on G on it. Results show that no meaningful
change has occurred, since, execpt for a discardable amount
of IP addresses becoming global, almost all the IP-ID series
remained odd.

D. Spatial Analysis

A functional way to graphically visualize the IP-ID classes
distribution is through a 12th order Hilbert curve, a fractal
space-filling curve which allows the mapping of the one-
dimensional IPv4 address space into a bi-dimensional image.
The use of Hilbert curves to compactly represent Internet-wide
characteristics was first popularized by the Xkcd comic [1]
and then used ever since. Each pixel in the image depicted
in Fig.16 represents a single /24 prefix block and its color
can range among six different hues. Five of these refer to
the five IP-ID classes and are respectively assigned to the
pixel if one representative address of that /24 network is
part of our analysis, i.e. it belongs to L, and the model has
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Fig. 14. Standard Deviation of IP-ID classes of IP addresses owned by same
AS

classified it as the corresponding color label. On the contrary
if there are no IP addresses in L belonging to that /24 the
associated pixel is coloured white. From the image it is clearly
possible to highlight some easily distinguishable islands of
close IP addresses which implement the IP-ID in the same
way. However, this is not an exhaustive result to assess that
the hosts whose IP addresses belong to the same prefix block
generates IP-ID in the same manner.

What can be further inspected is the spatial aggregation of
the IP addresses per Autonomous System. We perform this
by querying Team Cymru whois database [7] and collecting
from there information about the 49189 ASes of the the IP
addresses present in our dataset L. We focus only on the 32994
ASes owning at least two IP addresses of the list, discarding
in this way 16k IP addresses. We evaluate then the standard
deviation σ of the IP-ID classes of the IP addresses belonging
to the same AS. We find out, as shown in Fig.14, that 29% of
the ASes own IP addresses from whom we collected packets
containing the IP-ID generated in the same way, leading to
a standard deviation σ = 0. This result is not telling much
if considered alone, and since the most popular class is about
40% of the total this could just be equal to a random clustering
of the IP addresses. To have a clearer picture of what is really
going on with the AS aggregation, we shrink the data slightly
more and focus only on those ASes owning no more than 2000
IP addresses, discarding only 0.5% of the data. We now want
to observe how the standard deviation of the IP-ID classes per
AS vary with the size of the AS, understood as the number of
IP addresses aggregated within the same bin. The scatterplot
of this relationship is shown at Fig.15: there we can observe
that most of the plot is sparse only in one dimension, i. e. the
size of the AS bin. In fact, most of the points lie in the very
left region of the graph, in the area where the number of IP
addresses per AS is lower than 300.

VI. CONCLUSIONS

This work presents, to the best of our knowledge, the first
systematic study of the prevalence of different IP-ID behaviors
in the current IPv4 Internet (extending this work to IPv6 is a
future, necessary, work). In this work, we find evidence that
local and constant implementations of the IP-ID are prevalent:
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Fig. 16. IP-ID census results, shown as a 12th order Hilbert curve, a fractal
space-filling curve that allows the mapping of the one-dimensional IPv4
address space into a bi-dimensional image.

this is in contrast with common knowledge [6], [9], [14], [21],
[23], [31], from which the global counter was expected, even
in recent times, to be the most popular IP-ID implementation.

Summary and Perspectives. In this study, we first propose a
framework to robustly classify the different IP-ID behaviours
with only a handful of IP packets. Our methodology consists
of three main blocks: data collection, model construction and
validation.

The data collection relies on an experimental testbed com-
prising one sender and two receivers, which collect the IP
packets and, specifically, the information related to the IP-
ID field. The sender sends a burst of packets, minimizing the
impact of external traffic and purposely exploiting spoofing to
precisely alternate addresses in the sequence.
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In the model construction block, we exploit a decision tree
classifier, which is trained and validated over datasets gathered
from real measurements and additionally tested in the presence
of controlled losses to assess its robustness. Training of the
model required manual validation of thousands of sequences:
during this phase, we also discovered some odd behaviour, not
documented in any of the previous RFCs, and which may be
attributed to different reasons.

In instances where odd behaviour was previously reported,
our classifier is the first to automatically and correctly label
such instances, making it easier to perform large-scale analy-
sis over the Internet. Moreover, classification only requires
a handful of packets, making the methodology extremely
lightweight.

Given that our classifier is lightweight and robust to losses,
we finally perform a census (in 2017) of the IPv4 address
space, selecting responsive representatives for each /24 block.

Experimental results show that the majority of hosts adopt
local IP-IDs (39%) or a constant counter (34%) of which:
• A fraction of global counters (18%) is significantly lower

than expected;
• A non-marginal number of hosts have an odd behaviour

(7%);
• Random IP-IDs are only slightly more than an exception

(2%).
This outcome provides a picture of Internet-wide adoption of
the different IP-ID implementations. Indeed, we gather that
the 18% breakdown of the global implementation in 2017
is three times lower with respect to the 57% reported in
2013 [14]. While the quantitative reduction is in line with the
statistics reported by recent work that leverages global IP-ID
behaviour to detect censorship in the Internet [24], one could
have expected the decrease in global implementation to be
compensated by an increase of random IP-IDs, which is not
the case.
Contributions. Our first contribution is to devise an accurate,
lightweight and robust classifier: accuracy of the classifier
follows from a principled definition of the statistical features
used to succinctly describe the IP-ID sequence; robustness is
a consequence of this choice, as features remains wide apart
even under heavy losses.

Our second contribution is to carry on a manual investi-
gation effort for a moderate size dataset coming from real
Internet measurements: this valuable ground truth allow us to
adopt a supervised classification techniques to train a model
able not only to detect well-defined behaviors, but also to
correctly recognize a wide range of odd behaviors.

Finally, all our datasets, including the testing with manual
ground truth, as well as the results of our census, are publicly
available at [26]: we hope that the former can assist scientists
to build and test new techniques for IP-ID classification,
whereas the latter provides practitioners with readily usable
lists of the hosts with global IP-ID implementations for their
inference. Specifically, the available readily usable list of the
approximate half million hosts with global IP-ID implemen-
tations global implementations [26] can make work such as
[2], [6], [24], [29] still possible. Moreover, by updating and
consolidating the scattered knowledge [6], [10], [21], [24],

[31] of IP-ID prevalence, this work contributes in refining the
current global Internet map.
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